Advertisement

Doklady Biochemistry and Biophysics

, Volume 481, Issue 1, pp 190–194 | Cite as

Characterization of Aminopeptidase P from the Unicellular Cyanobacterium Synechocystis sp. PCC6803

  • A. S. BaikEmail author
  • K. S. Mironov
  • D. V. Arkhipov
  • M. S. Piotrovskii
  • E. S. Pojidaeva
Biochemistry, Biophysics, and Molecular Biology
  • 34 Downloads

Abstract

The PepP protein has been purified in vitro and characterized for the first time. It is encoded by the sll0136 gene of the unicellular cyanobacterium Synechocystis sp. PCC6803. It is established that the PepP protein is a Mn2+-dependent Xaa-Pro-specific aminopeptidase. The protein in the reaction of hydrolysis of the fluorescent peptide Lys(N-Abz)-Pro-Pro-pNA has a maximal activity at pH 7.6 and 32°C.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cunninghm, D.F. and O’Connor, B., Biochim. Biophys. Acta, 1997, vol. 1343, pp. 160–186CrossRefGoogle Scholar
  2. 2.
    Lin, L.N. and Brandts, J.F., Biochemistry, 1979, vol. 18, pp. 5037–5042CrossRefPubMedGoogle Scholar
  3. 3.
    Wilce, M.C.J., Bond, C.S., Dixon, N.E., et al., Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, pp. 3472–3477CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hauser, F., Strassner, J., and Schaller, A., J. Biol. Chem., 2001, vol. 276, pp. 31732–31737CrossRefPubMedGoogle Scholar
  5. 5.
    Huang, S., Nelson, C.J., Li, L., et al., Plant Physiol., 2015, vol. 168, pp. 415–427CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Carrie, C., Venne, A.S., Zahedi, R.P., et al., J. Exp. Bot., 2015, vol. 66, pp. 2691–2708CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sokolenko, A., Pojidaeva, E., Zinchenko, V., et al., Curr. Genet., 2002, vol. 41, pp. 291–310CrossRefPubMedGoogle Scholar
  8. 8.
    Pojidaeva, E.S., Malterer, S., Baik, A.S., et al., Russ. J. Plant Physiol., 2013, vol. 60, pp. 511–517CrossRefGoogle Scholar
  9. 9.
    Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685CrossRefPubMedGoogle Scholar
  10. 10.
    Stöckel-Maschek, A., Stiebitz, B., Koelsch, R., et al., Anal. Biochem., 2003, vol. 322, pp. 60–67CrossRefPubMedGoogle Scholar
  11. 11.
    Drinkwater, N., Sivaraman, K.K., Bamert, R.S., et al., Biochem. J., 2016, vol. 473, pp. 3189–3204CrossRefPubMedGoogle Scholar
  12. 12.
    Lee, H.S., Kim, Y.J., Bae, S.S., et al., Appl. Environ. Microbiol., 2006, vol. 72, pp. 1886–1890CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yoshimoto, T., Murayama, N., and Tsuru, D., Agric. Biol. Chem., 1988, vol. 52, pp. 1957–1963Google Scholar
  14. 14.
    Lloyd, G.S., Hryszko, J., Hooper, N.M., et al., Biochem. Pharm., 1996, vol. 52, pp. 229–236CrossRefPubMedGoogle Scholar
  15. 15.
    Sali, A. and Blundell, T.L., J. Mol. Biol., 1993, vol. 234, pp. 779–815CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Baik
    • 1
    Email author
  • K. S. Mironov
    • 1
  • D. V. Arkhipov
    • 1
  • M. S. Piotrovskii
    • 1
  • E. S. Pojidaeva
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations