Doklady Biochemistry and Biophysics

, Volume 480, Issue 1, pp 173–176 | Cite as

Detection of Hispidin by a Luminescent System from Basidiomycete Armillaria borealis

  • A. P. PuzyrEmail author
  • S. E. Medvedeva
  • A. E. Burov
  • Yu. P. Zernov
  • V. S. Bondar
Biochemistry, Biophysics, and Molecular Biology


In in vitro experiments, the possibility of using a luminescent system extracted from the luminous fungus Armillaria borealis has been shown to detect and determine the concentration of hispidin. A linear dependence of the luminescent response on the content of hispidin in solutions in the concentration range of 5.4 × 10–5–1.4 × 10–2 µM was detected. The stability of the enzyme system and the high sensitivity of the bioluminescent reaction allows carrying out multiple measurements with the analyte detection limit of 1.3 × 10–11 g. The obtained results show the prospects of creating a rapid bioluminescent method for the analysis of medical substances or extracts from various biological objects for the presence of hispidin.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wu, T. and Xu, B., Antidiabetic and antioxidant activities of eight medicinal mushroom species from china, Int. J. Med. Mushrooms, 2015, vol. 17, pp. 129–140.CrossRefPubMedGoogle Scholar
  2. 2.
    Kalaras, M.D., Richie, J.P., Calcagnotto, A., and Beelman, R.B., Mushrooms: a rich source of the antioxidants ergothioneine and glutathione, Food Chem., 2017, vol. 233, pp. 429–433.CrossRefPubMedGoogle Scholar
  3. 3.
    Prasad, S., Rathore, H., Sharma, S., and Yadav, A.S., Medicinal mushrooms as a source of novel functional food, Int. J. Food Sci. Nutr. Diet., 2015, vol. 4, pp. 221–225.Google Scholar
  4. 4.
    Greeshma, P., Ravikumar, K.S., Neethu, M.N., Pandey, M., Zuhara, K.F., and Janardhanan, K.K., Antioxidant, anti-inflammatory, and antitumor activities of cultured mycelia and fruiting bodies of the elm oyster mushroom, Hypsizygus ulmarius (agaricomycetes), Int. J. Med. Mushrooms, 2016, vol. 18, pp. 235–244.CrossRefPubMedGoogle Scholar
  5. 5.
    Lim, J.H., Lee, Y.M., Park, S.R., Kim, D.H., and Lim, B.O., Anticancer activity of hispidin via reactive oxygen species-mediated apoptosis in colon cancer cells, Anticancer Res., 2014, vol. 34, pp. 4087–4093.PubMedGoogle Scholar
  6. 6.
    Li, N., Zhao, L., Ng, T.B., Wong, J.H., Yan, Y., Shi, Z., and Liu, F., Separation and purification of the antioxidant compound hispidin from mushrooms by molecularly imprinted polymer, Appl. Microbiol. Biotechnol., 2015, vol. 99, pp. 7569–7577.CrossRefPubMedGoogle Scholar
  7. 7.
    Lv, L.X., Zhou, Z.X., Zhou, Z.Z., Zhang, L.J., Yan, R., Zhao, Z., Yang, L.Y., Bian, X.Y., Jiang, H.Y., Li, Y.D., Sun, Y.S., Xu, Q.Q., Hu, G.L., Guan, W.J., and Li, Y.Q., Hispidin induces autophagic and necrotic death in SGC-7901 gastric cancer cells through lysosomal membrane permeabilization by inhibiting tubulin polymerization, Oncotarget, 2017, vol. 8, pp. 26992–27006.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Lin, W.C., Deng, J.S., Huang, S.S., Wu, S.H., Lin, H.Y., and Huang, G.J., Evaluation of antioxidant, antiinflammatory and anti-proliferative activities of ethanol extracts from different varieties of sanghuang species, RSC Adv., 2017, vol. 7, pp. 7780–7788.CrossRefGoogle Scholar
  9. 9.
    Anouar, H., Ali, ShahS.A., Hassan, N.B., Moussaoui, N.El., Ahmad, R., Zulkefeli, M., and Weber, J.-F.F., Antioxidant activity of hispidin oligomers from medicinal fungi: a DFT study, Molecules, 2014, vol. 19, pp. 3489–3507.CrossRefGoogle Scholar
  10. 10.
    Tu, P.T.B. and Tawata, S., Anti-obesity effects of hispidin and Alpinia zerumbet bioactives in 3T3-L1 adipocytes, Molecules, 2014, vol. 19, pp. 1656–1667.Google Scholar
  11. 11.
    Shao, H.J., Jeong, J.B., Kima, K.-J., and Leea, S.-H., Anti-inflammatory activity of mushroom-derived hispidin through blocking of activation, J. Sci. Food Agric., 2015, vol. 95, pp. 2482–2486.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee, I.K., Cho, S.M., Seok, S.J., and Yun, B.S., Chemical constituents of Gymnopilus spectabilis and their antioxidant activity, Mycobiology, 2008, vol. 36, pp. 55–59.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bondar, V.S., Puzyr, A.P., Purtov, K.V., Petunin, A.I., Burov, A.E., Rodicheva, E.K., Medvedeva, S.E., Shpak, B.A., Tyaglik, A.B., Shimomura, O., and Gitelson, J.I., Isolation of luminescent system from the luminescent fungus Neonothopanus nimbi, Dokl. Biochem. Biophys., 2014, vol. 455, pp. 56–58.CrossRefPubMedGoogle Scholar
  14. 14.
    Puzyr, A.P., Medvedeva, S.E., Artemenko, K.S., and Bondar, V.S., Luminescence of cold extracts from mycelium of luminous basidiomycetes during longterm storage, Curr. Res. Environ. Appl. Mycol., 2017, vol. 7, pp. 227–235.CrossRefGoogle Scholar
  15. 15.
    Purtov, K.V., Petushkov, V.N., Baranov, M.S., Mineev, K.S., Rodionova, N.S., Kaskova, Z.M., Tsarkova, A.S., Petunin, A.I., Bondar, V.S., Rodicheva, E.K., Medvedeva, S.E., Oba, Yuichi., Oba, Yumiko., Arseniev, A.S., Lukyanov, S., Gitelson, J.I., and Yampolsky, I.V., The chemical basis of fungal bioluminescence, Angew. Chem., Int. Ed. Engl., 2015, vol. 54, pp. 8124–8128.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. P. Puzyr
    • 1
    Email author
  • S. E. Medvedeva
    • 1
  • A. E. Burov
    • 1
    • 2
  • Yu. P. Zernov
    • 3
  • V. S. Bondar
    • 1
  1. 1.Institute of Biophysics, Krasnoyarsk Research Center, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Institute of Computational Technologies, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  3. 3.Voevodsky Institute of Chemical Kinetics and Combustion, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations