Advertisement

Doklady Biochemistry and Biophysics

, Volume 480, Issue 1, pp 162–165 | Cite as

Sigma-1 Receptor Antagonist Haloperidol Attenuates Store-Dependent Ca2+ Entry in Macrophages

  • Z. I. Krutetskaya
  • L. S. Milenina
  • A. A. Naumova
  • S. N. Butov
  • V. G. Antonov
  • A. D. Nozdrachev
Biochemistry, Biophysics, and Molecular Biology
  • 6 Downloads

Abstract

Using Fura-2AM microfluorimetry, we have shown for the first time that preincubation of macrophages with sigma-1 receptor antagonist haloperidol leads to a significant inhibition of the store-dependent Ca2+ entry induced by endoplasmic Ca2+-ATPase inhibitors thapsigargin or cyclopiazonic acid in rat peritoneal macrophages. The results suggest the involvement of the sigma-1 receptor in the regulation of storedependent Ca2+ entry in macrophages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rousseaux, C.G. and Greene, S.F., J. Recept. Signal Transduct., 2016, vol. 36, pp. 327–388.Google Scholar
  2. 2.
    Cobos, E.J., Entrena, J.M., Nieto, F.R., et al., Curr. Neuropharmacol., 2008, vol. 6, pp. 344–366.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Su, T.-P., Hayashi, T., Maurice, T., et al., Trends Pharmacol. Sci., 2010, vol. 31, pp. 557–566.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Prakriya, M. and Lewis, R.S., Physiol. Rev., 2015, vol. 95, pp. 1383–1436.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Moreno, C. and Vaca, L., in Store-Operated Ca2+ Entry (SOCE) Pathways, Wien: Springer-Verlag, 2012, pp. 93–113.CrossRefGoogle Scholar
  6. 6.
    Cobos, E.J., Del Pozo, E., and Baeyens, J.M., J. Neurochem., 2007, vol. 102, pp. 812–825.CrossRefPubMedGoogle Scholar
  7. 7.
    Milenina, L.S., Krutetskaya, Z.I., Naumova, A.A., et al., Tsitologiia, 2015, vol. 57, no. 7, pp. 518–525.PubMedGoogle Scholar
  8. 8.
    Grynkiewicz, G., Poenie, M., and Tsien, R.Y., J. Biol. Chem., 1985, vol. 260, pp. 3440–3450.PubMedGoogle Scholar
  9. 9.
    Xie, Q., Zhang, Y., Zhai, C., et al., J. Biol. Chem., 2002, vol. 277, pp. 16559–16566.CrossRefPubMedGoogle Scholar
  10. 10.
    Harper, J.L. and Daly, J.W., Drug Dev. Res., 1999, vol. 47, pp. 107–117.CrossRefGoogle Scholar
  11. 11.
    Choi, S.-Y., Kim, Y.-H., Lee, Y.-K., et al., Brit. J. Pharmocol., 2001, vol. 132, pp. 411–418.CrossRefGoogle Scholar
  12. 12.
    Gasparre, G., Abate, C., Carlucci, R., et al., Pharmacol. Rep., 2017, vol. 69, pp. 542–545.CrossRefPubMedGoogle Scholar
  13. 13.
    Amer, M.S., McKeown, L., Tumova, S., et al., Brit. J. Pharmacol., 2013, vol. 168, pp. 1445–1455.CrossRefGoogle Scholar
  14. 14.
    Tarabova, B., Novadova, M., and Lacinova, L., Gen. Physiol. Biophys., 2009, vol. 28, pp. 249–259.CrossRefPubMedGoogle Scholar
  15. 15.
    Srivats, S., Balasuriya, D., Pasche, M., et al., J. Cell Biol., 2016, vol. 213, pp. 65–79.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Z. I. Krutetskaya
    • 1
  • L. S. Milenina
    • 1
  • A. A. Naumova
    • 1
  • S. N. Butov
    • 1
  • V. G. Antonov
    • 1
  • A. D. Nozdrachev
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations