Advertisement

Doklady Biochemistry and Biophysics

, Volume 480, Issue 1, pp 152–154 | Cite as

Epoxygenase Inhibitors Attenuate the Stimulatory Effect of Glutoxim on Na+ Transport in Frog Skin

  • Z. I. Krutetskaya
  • A. V. Melnitskaya
  • V. G. Antonov
  • A. D. Nozdrachev
Biochemistry, Biophysics, and Molecular Biology
  • 9 Downloads

Abstract

Using voltage-clamp technique, the involvement of epoxygenases in immunomodulatory drug glutoxim regulation of Na+ transport in frog skin was investigated. We have shown for the first time that preincubation of the frog skin with epoxygenase inhibitors econazole or proadifen almost completely inhibits the stimulatory effect of glutoxim on Na+ transport. The data suggest the involvement of the enzymes and/or products of epoxygenase oxidation pathway of arachidonic acid metabolism in glutoxim effect on Na+ transport in frog skin epithelium.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Firsov, D., Robert-Nicoud, M., Gruender, S., et al., J. Biol. Chem., 1999, vol. 274, pp. 2743–2749.CrossRefPubMedGoogle Scholar
  2. 2.
    Boldyrev, A.A. and Bulygina, E.R., Ann. N.Y. Acad. Sci., 1997, vol. 834, pp. 666–668.CrossRefPubMedGoogle Scholar
  3. 3.
    Krutetskaya, Z.I., Lebedev, O.E., Melnitskaya, A.V., et al., Dokl. Biochem. Biophys., 2008, vol. 421, pp. 235–258.CrossRefGoogle Scholar
  4. 4.
    Els, W.J. and Helman, S.H., J. Membr. Biol., 1997, vol. 155, pp. 75–87.CrossRefPubMedGoogle Scholar
  5. 5.
    Needleman, P., Turk, J., Jacksick, B.A., et al., Annu. Rev. Biochem., 1986, vol. 55, pp. 69–102.CrossRefPubMedGoogle Scholar
  6. 6.
    Krutetskaya, Z.I., Melnitskaya, A.V., Antonov, V.G., et al., Dokl. Biochem. Biophys., 2013, vol. 451, pp. 193–195.Google Scholar
  7. 7.
    Krutetskaya, Z.I., Melnitskaya, A.V., Antonov, V.G., et al., Dokl. Biochem. Biophys., 2017, vol. 474, pp. 193–195.CrossRefPubMedGoogle Scholar
  8. 8.
    Capdevila, J. and Wang, W., Curr. Opin. Nephrol. Hypertens., 2013, vol. 22, pp. 163–169.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Capdevila, J., Gil, L., Orellana, M., et al., Arch. Biochem. Biophys., 1988, vol. 261, pp. 257–263.CrossRefPubMedGoogle Scholar
  10. 10.
    Wei, Y., Lin, D.-H., Kemp, R., et al., J. Gen. Physiol., 2004, vol. 124, pp. 719–727.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pavlov, T.S., Ilatovskaya, D., Levchenko, V., et al., Am. J. Physiol., 2011, vol. 301, pp. F672–F681.Google Scholar
  12. 12.
    Fan, F. and Roman, R.J., J. Am. Soc. Nephrol., 2017, vol. 28, pp. 2845–2855.CrossRefPubMedGoogle Scholar
  13. 13.
    Xu, X., Zhao, C.X., Wang, L., et al., Diabetes, 2010, vol. 59, pp. 997–1005.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ma, B., Xiong, X., Chen, C., et al., Endocrinology, 2013, vol. 154, pp. 2843–2856.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vasilenko, K.P., Burova, E.B., Antonov, V.G., et al., Tsitologiia, 2006, vol. 48, no. 6, pp. 500–507.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Z. I. Krutetskaya
    • 1
  • A. V. Melnitskaya
    • 1
  • V. G. Antonov
    • 1
  • A. D. Nozdrachev
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations