Advertisement

Doklady Biochemistry and Biophysics

, Volume 480, Issue 1, pp 143–145 | Cite as

Effect of Glutamine Synthetase Gene Overexpression in Birch (Betula pubescens) Plants on Auxin Content and Rooting in vitro

  • V. G. Lebedev
  • A. V. Korobova
  • G. V. Shendel
  • G. R. Kudoyarova
  • K. A. Shestibratov
Biochemistry, Biophysics, and Molecular Biology
  • 19 Downloads

Abstract

The effects of transformation of downy birch (Betula pubescens Ehrh.) with the GS1 gene encoding the cytosolic form of glutamine synthetase on the rooting of plants in vitro was studied. The transgenic plants had an elevated content of glutamine as well as glutamic and aspartic acids and rooted more rapidly than the control plants. Rooting on a medium containing the glutamine synthetase inhibitor phosphinothricin prevented the accumulation of auxin in birch plants carrying the GS1 gene, indicating the involvement of this enzyme in raising the level of auxins in the transgenic plants. The correlation between the increase in the auxin levels in the transgenic plants carrying the glutamine synthetase gene and the increase in the rooting rate is shown for the first time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gewin, V., Nature, 2010, vol. 466, pp. 552–553.CrossRefPubMedGoogle Scholar
  2. 2.
    Woodwart, A.W. and Bartel, B.K., Ann. Bot., 2005, vol. 95, no. 5, pp. 707–735.CrossRefGoogle Scholar
  3. 3.
    Kudoyarova, G.R., Dodd, I.C., Veselov, D.S., Rothwell, S.A., and Veselov, S.Yu., J. Exp. Bot., 2015, vol. 66, pp. 2133–2144.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shestibratov, A., Bulatova, I.V., and Novikov, P.S., Appl. Biochem. Microbiol., 2010, vol. 46, no. 8, pp. 763–768.CrossRefGoogle Scholar
  5. 5.
    Man, H., Pollmann, S., Weiler, E.W., and Kirby, E.G., J. Exp. Bot., 2011, vol. 62, pp. 4423–4431.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lebedev, V.G., Schestibratov, K.A., Shadrina, T.E., Bulatova, I.V., Abramochkin, D.G., and Miroshnikov, A.I., Russ. J. Genet., 2010, vol. 46, no. 11, pp. 1282–1289.CrossRefGoogle Scholar
  7. 7.
    Veselov, S.Yu., Kudoyarova, G.R., Egutkin, N.L., Gyuli-Zade, V.Z., Mustafina, A.R., and Kof, E.M., Physiol. Plant., 1992, vol. 86, pp. 93–96.CrossRefGoogle Scholar
  8. 8.
    Walch-Liu, P., Ivanov, I.I., Filleur, S., Gan, Y., Remans, T., and Forde, B.G., Ann. Bot., 2006, vol. 97, no. 5 P, pp. 875–881.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kudoyarova, G.R., Melentiev, A.I., Martynenko, E.V., Arkhipova, T.N., Shendel, G.V., Kuz’mina, L.Yu., Dodd, I.C., and Veselov, S.Yu., Plant Physiol. Biochem., 2014, vol. 83, pp. 285–291.CrossRefPubMedGoogle Scholar
  10. 10.
    Migge, A., Carrayol, E., Hirel, B., and Becker, T.W., Planta, 2000, vol. 210, pp. 252–260.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhu, C., Chen, S., Zhang, G., Wang, W., Tang, Y., Mei, B., and Song, R., Plant Biotech. Rep., vol. 9, pp. 187–195.Google Scholar
  12. 12.
    Urriola, J. and Rathore, K.S., Transgenic Res, 2015, vol. 24, pp. 397–407.CrossRefPubMedGoogle Scholar
  13. 13.
    Walch-Liu, P. and Forde, B.G., Plant J., 2008, vol. 54, pp. 820–828.Google Scholar
  14. 14.
    Suárez, I., Bodega, G., and Fernández, B., Neurochem. Int., 2002, vol. 41, pp. 123–142.CrossRefPubMedGoogle Scholar
  15. 15.
    Forde, B.G. and Walch-Liu, P., Plant Cell Environ., 2009, vol. 32, pp. 682–693.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. G. Lebedev
    • 1
  • A. V. Korobova
    • 2
  • G. V. Shendel
    • 2
  • G. R. Kudoyarova
    • 2
  • K. A. Shestibratov
    • 1
  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Pushchino Branch)Russian Academy of SciencesPushchino, Moscow oblastRussia
  2. 2.Ufa Institute of BiologyRussian Academy of SciencesUfaRussia

Personalised recommendations