Doklady Biochemistry and Biophysics

, Volume 475, Issue 1, pp 250–252 | Cite as

Expression of master regulatory genes of embryonic development in pancreatic tumors

  • L. G. Kondratyeva
  • I. P. Chernov
  • M. V. Zinovyeva
  • E. P. Kopantzev
  • E. D. Sverdlov
Biochemistry, Biophysics, and Molecular Biology


The expression level of some important master regulators of embryonic development of the pancreas in the tumor samples of this human organ was determined. We found that the transcription of SOX9, GATA4, PDX1, PTF1a, and HNF1b genes in the tumor samples was reduced as compared to the samples of normal pancreatic tissues, and the KLF5 gene expression in the tumor cells was elevated. We assume that all the studied genes, except KLF5, form a single regulatory module that supports the identity of tumor progenitor cells. A simultaneous suppression of expression of these master factors may be critical for the neoplastic transformation of pancreatic cells.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stewart, B.W. and Wild, C.P., World Cancer Report, Lyon, France: International Agency for Research on Cancer, 2014.Google Scholar
  2. 2.
    Zinovyeva, M.V., Kostina, M.B., Monastyrskaya, G.S., et al., Dokl. Biochem. Biophys., 2015, vol. 463, pp. 203–208.CrossRefPubMedGoogle Scholar
  3. 3.
    Shih, H.P., Seymour, P.A., Patel, N.A., et al., Annu. Rev. Cell Dev. Biol., 2013, vol. 29, pp. 81–105.CrossRefPubMedGoogle Scholar
  4. 4.
    Roy, N., Takeuchi, K.K., Ruggeri, J.M., et al., Genes Dev., 2016, vol. 30, pp. 2669–2683.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zinovyeva, M.V., Kostina, M.B., Chernov, I.P., et al., Russ. J. Bioorg. Chem., 2016, vol. 42, pp. 606–611.CrossRefGoogle Scholar
  6. 6.
    Diaferia, R.G., Balestrieri, C., Prosperini, E., et al., EMBO J., 2016, vol. 35, pp. 595–617.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hollenhorst, P.C., Jones, D.A., and Graves, B.J., Nucl. Acids. Res., 2004, vol. 32, pp. 5693–5702.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Janky, R., Binda, M.M., Allemeersch, J., et al., BMC Cancer, 2016, vol. 16, p. 632.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Park, J.Y., Hong, S.M., Klimstra, D.S., et al., Appl. Immunohistochem. Mol. Morphol., 2011, vol. 19, pp. 444–449.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wu, J., Liu, S., Yu, J., et al., Cancer Gene Therapy, 2014, vol. 21, pp. 48–53.CrossRefPubMedGoogle Scholar
  11. 11.
    Shroff, S., Rashid, A., Wang, H., et al., Hum. Pathol., 2014, vol. 45, pp. 456–463.CrossRefPubMedGoogle Scholar
  12. 12.
    Krah, N.M., De La, J.P., Swift, G.H., et al., Elife, 2015, vol. 7, p. 4.Google Scholar
  13. 13.
    Karafin, M.S., Cummings, C.T., Fu, B., et al., Int. J. Clin. Exp. Pathol., 2010, vol. 3, pp. 47–55.PubMedCentralGoogle Scholar
  14. 14.
    Cano, D.A., Soria, B., Martin, F., et al., Cell. Mol. Life Sci., 2014, vol. 71, pp. 2383–2402.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. G. Kondratyeva
    • 1
  • I. P. Chernov
    • 1
  • M. V. Zinovyeva
    • 1
  • E. P. Kopantzev
    • 1
  • E. D. Sverdlov
    • 1
  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations