Doklady Biochemistry and Biophysics

, Volume 464, Issue 1, pp 315–318

A comprehensive study of interactions between lectins and glycoproteins for the development of effective theranostic nanoagents

  • V. O. Shipunova
  • M. P. Nikitin
  • I. V. Zelepukin
  • P. I. Nikitin
  • S. M. Deyev
  • R. V. Petrov
Biochemistry, Biophysics and Molecular Biology

Abstract

A comprehensive study of the interactions between lectins and glycoproteins possessing different glycosylation profiles in the composition of nanoparticles was carried out in order to find specifically interacting protein pairs for the creation of novel classes of multifunctional nanoagets that based on protein-assisted selfassembly. We obtained information about specific interactions of certain lectins with selected glycoproteins as well as about the ability of certain monosaccharides to competitively inhibit binding of glycoproteins with lectins. These protein-mediated interactions may be involved in the formulation of self-assembled nanoparticles for therapy and diagnostics of various diseases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mironova, K.E., Proshkina, G.M., Ryabova, A.V., Stremovskiy, O.A., Lukyanov, S.A., Petrov, R.V., and Deyev, S.M., Theranostics, 2013, vol. 3, no. 11, pp. 831–840.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Torchilin, V.P., Nat. Rev. Drug Discov., 2014, vol. 13, no. 11, pp. 813–827.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Cheng, C.J., Tietjen, G.T., Saucier-Sawyer, J.K., and Saltzman, W.M., Nat. Rev. Drug Discov., 2015, vol. 14, no. 4, pp. 239–247.CrossRefPubMedGoogle Scholar
  4. 4.
    Kodiha, M., Wang, Y.M., Hutter, E., Maysinger, D., and Stochaj, U., Theranostics, 2015, vol. 5, no. 4, pp. 357–370.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Nikitin, M.P., Shipunova, V.O., Deyev, S.M., and Nikitin, P.I., Nature Nanotech., 2014, vol. 9, no. 9, pp. 716–722.CrossRefGoogle Scholar
  6. 6.
    Aghayeva, U.F., Nikitin, M.P., Lukash, S.V., and Deyev, S.M., ACS Nano, 2013, vol. 7, no. 2, pp. 950–961.CrossRefPubMedGoogle Scholar
  7. 7.
    Nikitin, M.P., Zdobnova, T.A., Lukash, S.V., Stremovskiy, O.A., and Deyev, S.M., Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 13, pp. 5827–5832.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Nie, Z., Petukhova, A., and Kumacheva, E., Nature Nanotech., 2010, vol. 5, no. 1, pp. 15–25.CrossRefGoogle Scholar
  9. 9.
    Niemeyer, C.M., Angew. Chem., Int. Ed., 2001, vol. 40, pp. 4128–4158.CrossRefGoogle Scholar
  10. 10.
    Grzelczak, M., Vermant, J., Furst, E.M., and LizMarzán, L.M., ACS Nano, 2010, vol. 4, no. 7, pp. 3591–3605.CrossRefPubMedGoogle Scholar
  11. 11.
    Bies, C., Lehr, C.M., and Woodley, J.F., Drug Deliv. Rev., 2004, vol. 56, no. 4, pp. 425–435.CrossRefGoogle Scholar
  12. 12.
    Orlov, A.V., Khodakova, J.A., Nikitin, M.P., Shepelyakovskaya, A.O., Brovko, F.A., Laman, A.G., Grishin, E.V., and Nikitin, P.I., Anal. Chem., 2013, vol. 85, no. 2, pp. 1154–1163.CrossRefPubMedGoogle Scholar
  13. 13.
    Nikitin, P.I., Vetoshko, P.M., and Ksenevich, T.I., Sensor Lett., 2007, vol. 5, pp. 296–299.CrossRefGoogle Scholar
  14. 14.
    Hermanson, G.T., Bioconjugate Techniques, 3rd ed., London: Academic, 2013.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. O. Shipunova
    • 1
    • 2
  • M. P. Nikitin
    • 1
    • 3
    • 4
  • I. V. Zelepukin
    • 1
    • 3
  • P. I. Nikitin
    • 4
    • 5
  • S. M. Deyev
    • 1
    • 2
  • R. V. Petrov
    • 1
  1. 1.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Nizhny Novgorod State UniversityNizhny NovgorodRussia
  3. 3.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia
  4. 4.Prokhorov Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  5. 5.National Research Nuclear University “Moscow Engineering Physics Institute,”MoscowRussia

Personalised recommendations