Advertisement

Regular and Chaotic Dynamics

, Volume 24, Issue 3, pp 329–352 | Cite as

A Parabolic Chaplygin Pendulum and a Paul Trap: Nonintegrability, Stability, and Boundedness

  • Alexey V. BorisovEmail author
  • Alexander A. KilinEmail author
  • Ivan S. MamaevEmail author
Article
  • 18 Downloads

Abstract

This paper is a small review devoted to the dynamics of a point on a paraboloid. Specifically, it is concerned with the motion both under the action of a gravitational field and without it. It is assumed that the paraboloid can rotate about a vertical axis with constant angular velocity. The paper includes both well-known results and a number of new results.

We consider the two most widespread friction (resistance) models: dry (Coulomb) friction and viscous friction. It is shown that the addition of external damping (air drag) can lead to stability of equilibrium at the saddle point and hence to preservation of the region of bounded motion in a neighborhood of the saddle point. Analysis of three-dimensional Poincaré sections shows that limit cycles can arise in this case in the neighborhood of the saddle point.

Keywords

parabolic pendulum Paul trap rotating paraboloid internal damping external damping friction resistance linear stability Hill’s region bifurcational diagram Poincaré section bounded trajectory chaos integrability nonintegrability separatrix splitting 

MSC2010 numbers

37J25 37J05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors express their gratitude to V. V. Kozlov and I. A. Bizyaev for fruitful discussions and useful comments.

References

  1. 1.
    Arnol’d, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed., Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 2006.Google Scholar
  2. 2.
    Bizyaev, I. A., Borisov, A. V., Kozlov, V. V, and Mamaev, I. S., Fermi-Like Acceleration and Power-Law Energy Growth in Nonholonomic Systems, Nonlinearity, 2019, in press.Google Scholar
  3. 3.
    Bloch, A. M., Nonholonomic Mechanics and Control, 2nd ed., Interdiscip. Appl. Math., vol. 24, New York: Springer, 2015.Google Scholar
  4. 4.
    Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E., and Murray, R. M., Nonholonomic Mechanical Systems with Symmetry, Arch. Rational Mech. Anal., 1996, vol. 136, no. 1, pp. 21–99.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bogoyavlensky, O. I., Integrable Cases of Rigid Body Dynamics and Integrable Systems on Spheres S n, Izv. AN SSSR, 1985, vol. 49, no. 5, pp. 899–915 (Russian).Google Scholar
  6. 6.
    Bolsinov, A. V., Borisov, A. V., and Mamaev, I. S., Topology and Stability of Integrable Systems, Russian Math. Surveys, 2010, vol. 65, no. 2, pp. 259–318; see also: Uspekhi Mat. Nauk, 2010, vol. 65, no. 2, pp. 71–132.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Borisov, A. V., Kazakov, A. O., and Kuznetsov, S. P., Nonlinear Dynamics of the Rattleback: A Non-holonomic Model, Physics–Uspekhi, 2014, vol. 57, no. 5, pp. 453–460; see also: Uspekhi Fiz. Nauk, 2014, vol. 184, no. 5, pp. 493–500.Google Scholar
  8. 8.
    Borisov, A. V., Kilin, A. A., and Mamaev, I. S., A Nonholonomic Model of the Paul Trap, Regul. Chaotic Dyn., 2018, vol. 23, no. 3, pp. 339–354.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Borisov, A. V., Kilin, A. A., and Mamaev, I. S., Stability of Steady Rotations in the Nonholonomic Routh Problem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 239–249.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Borisov, A. V. and Mamaev, I. S., Modern Methods of the Theory of Integrable Systems, Moscow: R&C Dynamics, ICS, 2003 (Russian).zbMATHGoogle Scholar
  11. 11.
    Borisov, A. V. and Mamaev, I. S., Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems, Regul. Chaotic Dyn., 2008, vol. 13, no. 5, pp. 443–490.MathSciNetzbMATHGoogle Scholar
  12. 12.
    Borisov, A. V. and Mamaev, I. S., Strange Attractors in Rattleback Dynamics, Physics-Uspekhi, 2003, vol. 46, no. 4, pp. 393–403; see also: Uspekhi Fiz. Nauk, 2003, vol. 173, no. 4, pp. 407–418.Google Scholar
  13. 13.
    Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 277–328.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Jacobi Integral in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 383–400.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Borisov, A. V., Mamaev, I. S., and Kilin, A. A., Rolling of a Ball on a Surface: New Integrals and Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 201–219.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Bottema, O., Stability of Equilibrium of a Heavy Particle on a Rotating Surface, Z. Angew. Math. Phys., 1976, vol. 27, no. 5, pp. 663–669.MathSciNetzbMATHGoogle Scholar
  17. 17.
    Bou-Rabee, N. M., Marsden, J. E., Romero, L. A., Tippe Top Inversion As a Dissipation-Induced Instability, SIAM J. Appl. Dyn. Syst., 2004, vol. 3, no. 3, pp. 352–377.MathSciNetzbMATHGoogle Scholar
  18. 18.
    Brouwer, L. E. J., Collected Works: Vol. 2, H. Freudenthal (Ed.), Amsterdam: North-Holland, 1976.Google Scholar
  19. 19.
    Brouwer, L. E. J., The Motion of a Particle on the Bottom of a Rotating Vessel under the Influence of the Gravitational Force, in Collected Works: Vol. 2, H. Freudenthal (Ed.), Amsterdam: North-Holland, 1976, pp. 665–686.Google Scholar
  20. 20.
    Cartwright, J. H. E., Feingold, M., and Piro, O., An Introduction to Chaotic Advection, in Mixing: Chaos and Turbulence, H. Chaté, E. Villermaux, J.-M. Chomaz (Eds.), NATO ASI Series (Series B: Physics), vol. 373, Boston, Mass.: Springer, 1999, pp. 307–342.Google Scholar
  21. 21.
    Chaplygin, S. A., On a Paraboloid Pendulum, in Complete Collection of Works: Vol. 1, Leningrad: Izd. Akad. Nauk SSSR, 1933, pp. 194–199 (Russian).Google Scholar
  22. 22.
    Cheng, Ch. Q. and Sun, Y. S., Existence of Invariant Tori in Three-Dimensional Measure-Preserving Mappings, Celestial Mech. Dynam. Astronom., 1989/90, vol. 47, no. 3, pp. 275–292.MathSciNetzbMATHGoogle Scholar
  23. 23.
    Chetayev, N. G., The Stability of Motion, Oxford: Pergamon, 1961.Google Scholar
  24. 24.
    Dullin, H. R. and Meiss, J. D., Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations, SIAM J. Appl. Dyn. Syst., 2009, vol. 8, no. 1, pp. 76–128.MathSciNetzbMATHGoogle Scholar
  25. 25.
    Fan, W., Du, L., Wang, S., and Zhou, H., Confining Rigid Balls by Mimicking Quadrupole Ion Trapping, Am. J. Phys., 2017, vol. 85, no. 11, pp. 821–829.Google Scholar
  26. 26.
    Fufaev, N. A., A Sphere Rolling on a Horizontal Rotating Plane, J. Appl. Math. Mech., 1983, vol. 47, no. 1, pp. 27–29; see also: Prikl. Mat. Mekh., 1983, vol. 47, no. 1, pp. 43–47.MathSciNetzbMATHGoogle Scholar
  27. 27.
    Gantmacher, F. R., The Theory of Matrices: In 2 Vols., New York: Chelsea, 1959.zbMATHGoogle Scholar
  28. 28.
    Gonchenko, A. S., Gonchenko, S. V., and Kazakov, A. O., Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 521–538.MathSciNetzbMATHGoogle Scholar
  29. 29.
    Gray, A., Jones, A., and Rimmer, R., Motion under Gravity on a Paraboloid, J. Differential Equations, 1982, vol. 45, no. 2, pp. 168–181.MathSciNetzbMATHGoogle Scholar
  30. 30.
    Hasegawa, T. and Bollinger, J. J., Rotating-Radio-Frequency Ion Traps, Phys. Rev. A, 2005, vol. 72, no. 4, 043403, 8 pp.Google Scholar
  31. 31.
    Huygens, Ch., Horologium oscillatorium, sive De motu pendulorum ad horologia aptato demonstrationes geometricae, Paris: Muguet, 1673.Google Scholar
  32. 32.
    Jacobi, C. G. J., Vorlesungen über Dynamik, 2nd ed., Berlin: Reimer, 1884.zbMATHGoogle Scholar
  33. 33.
    Kane, T. R. and Levinson, D. A., A Realistic Solution of the Symmetric Top Problem, ASME J. Appl. Mech., 1978, vol. 45, no. 4, pp. 903–909.Google Scholar
  34. 34.
    Karapetian, A. V., Global Qualitative Analysis of Tippe Top Dynamics, Mech. Solids, 2008, vol. 43, no. 3, pp. 342–348; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2008, no. 3, pp. 33–41.Google Scholar
  35. 35.
    Karavaev, Yu. L., Kilin, A. A., and Klekovkin, A. V., The Dynamical Model of the Rolling Friction of Spherical Bodies on a Plane without Slipping, Nelin. Dinam., 2017, vol. 13, no. 4, pp. 599–609 (Russian).MathSciNetzbMATHGoogle Scholar
  36. 36.
    Kirillov, O. N., Brouwer’s Problem on a Heavy Particle in a Rotating Vessel: Wave Propagation, Ion Traps, and Rotor Dynamics, Phys. Lett. A, 2011, vol. 375, no. 15, pp. 1653–1660.zbMATHGoogle Scholar
  37. 37.
    Kirillov, O. N., Nonconservative Stability Problems of Modern Physics, Berlin: de Gruyter, 2013.zbMATHGoogle Scholar
  38. 38.
    Kirillov, O. N. and Levi, M., Rotating Saddle Trap as Foucault’s Pendulum, Am. J. Phys., 2016, vol. 84, no. 1, pp. 26–31.Google Scholar
  39. 39.
    Koiller, J., and Ehlers, K., Rubber Rolling over a Sphere, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 127–152.MathSciNetzbMATHGoogle Scholar
  40. 40.
    Kozlov, V. V., Linear Hamiltonian Systems: Quadratic Integrals, Singular Subspaces and Stability, Regul. Chaotic Dyn., 2018, vol. 23, no. 1, pp. 26–46.MathSciNetzbMATHGoogle Scholar
  41. 41.
    Kuznetsov, A. P., Kuznetsov, S. P., Mosekilde, E., and Turukina, L.V., Two-Parameter Analysis of the Scaling Behavior at the Onset of Chaos: Tricritical and Pseudo-Tricritical Points, Phys. A, 2001, vol. 300, nos. 3–4, pp. 367–385.zbMATHGoogle Scholar
  42. 42.
    Markeev, A. P., On the Theory of Motion of a Rigid Body with a Vibrating Suspension, Dokl. Phys., 2009, vol. 54, no. 8, pp. 392–396; see also: Dokl. Akad. Nauk, 2009, vol. 427, no. 6, pp. 771–775.zbMATHGoogle Scholar
  43. 43.
    Meiss, J. D., Miguel, N., Simó, C., and Vieiro, A., Accelerator Modes and Anomalous Diffusion in 3D Volume-Preserving Maps, arXiv:1802.10484 (2018).zbMATHGoogle Scholar
  44. 44.
    Mireles James, J. D., Quadratic Volume-Preserving Maps: (Un)Stable Manifolds, Hyperbolic Dynamics, and Vortex-Bubble Bifurcations, J. Nonlinear Sci., 2013, vol. 23, no. 4, pp. 585–615.MathSciNetzbMATHGoogle Scholar
  45. 45.
    Moser, J., Lectures on Hamiltonian systems, vol. 81, Providence, R.I.: American Mathematical Soc., 1968.zbMATHGoogle Scholar
  46. 46.
    Painlevé, P., Leçons sur l’intégration des équations différentielles de la mécanique et applications, Paris: Hermann, 1895.zbMATHGoogle Scholar
  47. 47.
    Paul, W., Electromagnetic Traps for Charged and Neutral Particles, Rev. Mod. Phys., 1990, vol. 62, no. 3, pp. 531–540.Google Scholar
  48. 48.
    Paul, W. and Steinwedel, H., Ein neues Massenspektrometer ohne Magnetfeld, Z. Naturforsch. A, 1953, vol. 8, no. 7, pp. 448–450.Google Scholar
  49. 49.
    Pearce, R. M., Strong Focussing in a Magnetic Helical Quadrupole Channel, Nucl. Instrum. Methods, 1970, vol. 83, no. 1, pp. 101–108.Google Scholar
  50. 50.
    Rauch-Wojciechowski, S., Sköldstam, M., and Glad, T., Mathematical Analysis of the Tippe Top, Regul. Chaotic Dyn., 2005, vol. 10, no. 4, pp. 333–362.MathSciNetzbMATHGoogle Scholar
  51. 51.
    Routh, E. J., Dynamics of a System of Rigid Bodies: Elementary Part. Being Part 1 of a Treatise on the Whole Subject, 7th ed., rev. and enl., New York: Dover, 1960.Google Scholar
  52. 52.
    Siegel, C. L. and Moser, J. K., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., vol. 187, New York: Springer, 1971.zbMATHGoogle Scholar
  53. 53.
    Sokirko, A. V., Belopolskii, A. A., Matytsyn, A. V., and Kossakowski, D. A., Behavior of a Ball on the Surface of a Rotating Disk, Am. J. Phys., 1994, vol. 62, no. 2, pp. 151–156.Google Scholar
  54. 54.
    Stankevich, N. V., Kuznetsov, N. V., Leonov, G. A., and Chua, L. O., Scenario of the Birth of Hidden Attractors in the Chua Circuit, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2017, vol. 27, no. 12, 1730038, 18pp.MathSciNetzbMATHGoogle Scholar
  55. 55.
    Thompson, R. I., Harmon, T. J., and Ball, M. G., The Rotating-Saddle Trap: A Mechanical Analogy to RF-Electric-Quadrupole Ion Trapping?, Can. J. Phys., 2002, vol. 80, no. 12, pp. 1433–1448.Google Scholar
  56. 56.
    Thomson, W. and Tait, P. G., A Treatise on Natural Philosophy: Vol. 1, Part 1, Cambridge: Cambridge Univ. Press, 1879, pp. 370–415.Google Scholar
  57. 57.
    Verhulst, F., Brouwer’s Rotating Vessel: 1. Stabilization, Z. Angew. Math. Phys., 2012, vol. 63, no. 4, pp. 727–736.MathSciNetzbMATHGoogle Scholar
  58. 58.
    Wojciechowski, S., Integrable One-Particle Potentials Related to the Neumann System and the Jacobi Problem of Geodesic Motion on an Ellipsoid, Phys. Lett. A, 1985, vol. 107, no. 3, pp. 106–111.MathSciNetzbMATHGoogle Scholar
  59. 59.
    Yudovich, V. I., The Dynamics of a Particle on a Smooth Vibrating Surface, J. Appl. Math. Mech., 1998, vol. 62, no. 6, pp. 893–900; see also: Prikl. Mat. Mekh., 1998, vol. 62, no. 6, pp. 968–976.MathSciNetGoogle Scholar
  60. 60.
  61. 61.

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.A. A. Blagonravov Mechanical Engineering Research Institute of RASMoscowRussia
  2. 2.Institute of Mathematics and Mechanics of the Ural Branch of RASEkaterinburgRussia
  3. 3.Udmurt State UniversityIzhevskRussia
  4. 4.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  5. 5.Center for Technologies in Robotics and Mechatronics ComponentsInnopolis UniversityInnopolisRussia

Personalised recommendations