Regular and Chaotic Dynamics

, Volume 24, Issue 3, pp 312–328 | Cite as

Euler Elasticas for Optimal Control of the Motion of Mobile Wheeled Robots: the Problem of Experimental Realization

  • Andrey A. ArdentovEmail author
  • Yury L. KaravaevEmail author
  • Kirill S. YefremovEmail author


This paper is concerned with the problem of optimal path planning for a mobile wheeled robot. Euler elasticas, which ensure minimization of control actions, are considered as optimal trajectories. An algorithm for constructing controls that realizes the motion along the trajectory in the form of an Euler elastica is presented. Problems and special features of the application of this algorithm in practice are discussed. In particular, analysis is made of speedup and deceleration along the elastica, and of the influence of the errors made in manufacturing the mobile robot on the precision with which the prescribed trajectory is followed. Special attention is also given to the problem of forming optimal trajectories of motion along Euler elasticas to a preset point at different angles of orientation. Results of experimental investigations are presented.


mobile wheeled robot Euler’s elastica optimal control experimental investigations 

MSC2010 numbers

49K30 58E25 70Q05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors extend their gratitude to A. A. Kilin, Yu. L. Sachkov and A. V. Klekovkin for fruitful discussions and useful remarks.


  1. 1.
    Grisetti, G., Kümmerle, R., Stachniss, C., and Burgard, W., A Tutorial on Graph-Based SLAM, IEEE Intell. Transp. Syst. Mag., 2010, vol. 2, no. 4, pp. 31–43.CrossRefGoogle Scholar
  2. 2.
    Engel, J., Schöps, T., and Cremers, D., LSD-SLAM: Large-Scale Direct Monocular SLAM, in Computer Vision (ECCV 2014): European Conference on Computer Vision (Zurich, Switzerland, 6–12 Sept, 2014), D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Eds.), Lect. Notes Comput. Sci., vol. 8690, Cham: Springer, 2014, pp. 834–849.Google Scholar
  3. 3.
    Grisettiyz, G., Stachniss, C., and Burgard, W., Improving Grid-Based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling, in Proceedings of the 2005 IEEE International Conference on Robotics and Automation (Barcelona, Spain, 18–22 Apr, 2005), pp. 2432–2437.Google Scholar
  4. 4.
    Dissanayake, M.G., Newman, P., Clark, S., Durrant-Whyte, H. F., and Csorba, M., A Solution to the Simultaneous Localization and Map Building (SLAM) Problem, IEEE Trans. Robot. Autom., 2001, vol. 17, no. 3, pp. 229–241.CrossRefGoogle Scholar
  5. 5.
    Minguez, J., Lamiraux, F., and Laumond, J. P., Motion Planning and Obstacle Avoidance, in Springer Handbook of Robotics, B. Siciliano, O. Khatib (Eds.), Berlin: Springer, 2016, pp. 827–852.Google Scholar
  6. 6.
    Stentz, A., Optimal and Efficient Path Planning for Partially Known Environments, in Intelligent Unmanned Ground Vehicles, M.H. Hebert, C. Thorpe, A. Stentz (Eds.), The Springer International Series in Engineering and Computer Science (Robotics: Vision, Manipulation and Sensors), vol. 388, Boston, Mass.: Springer, 1997, pp. 203–220.CrossRefGoogle Scholar
  7. 7.
    Bobrow, J. E., Optimal Robot Plant Planning Using the Minimum-Time Criterion, IEEE J. Robot. Autom., 1988, vol. 4, no. 4, pp. 443–450.CrossRefGoogle Scholar
  8. 8.
    Sachkov, Yu. L., Maxwell Strata in Euler’s Elastic Problem, J. Dyn. Contr. Syst., 2008, vol. 14, no. 2, pp. 169–234.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Murray, R. M. and Sastry, S. Sh., Nonholonomic Motion Planning: Steering Using Sinusoids, IEEE Trans. Automat. Control, 1993, vol. 38, no. 5, pp. 700–716.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Laumond, J.-P., Nonholonomic Motion Planning for Mobile Robots: Tutorial Notes, Toulouse: LAAS-CNRS, 1998.CrossRefGoogle Scholar
  11. 11.
    Bushnell, L., Tilbury, D., and Sastry, S., Steering Three-Input Nonholonomic Systems: The Fire Truck Example, Int. J. Robotics Res., 1995, vol. 14, no. 4, pp. 366–381.CrossRefGoogle Scholar
  12. 12.
    Boissonnat, J. D. and Lazard, S., A Polynomial-Time Algorithm for Computing a Shortest Path of Bounded Curvature amidst Moderate Obstacle (Extended Abstract), in SCG’96: Proc. of the 12th Annual Symposium on Computational Geometry (Philadelphia, Pa., 24–26 May, 1996), pp. 242–251.Google Scholar
  13. 13.
    Tilbury, D., Murray, R. M., and Sastry, S. Sh., Trajectory Generation for the n-Trailer Problem Using Goursat Normal Form, IEEE Trans. Automat. Control, 1995, vol. 40, no. 5, pp. 802–819.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lau, B., Sprunk, Ch., and Burgard, W., Kinodynamic Motion Planning for Mobile Robots Using Splines, in IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems (St. Louis, Mo., 10–15 Oct, 2009), pp. 2427–2433.Google Scholar
  15. 15.
    Ghilardelli, F., Lini, G., and Piazzi, A., Path Generation Using η 4-Sphnes for a Truck and Trailer Vehicle, in IEEE Trans. Autom. Sci. Eng., 2014, vol. 11, no. 1, pp. 187–203.CrossRefGoogle Scholar
  16. 16.
    Borisov, A. V., Kilin, A. A., and Mamaev, I. S., On the Hadamard — Hamel Problem and the Dynamics of Wheeled Vehicles, Regul. Chaotic Dyn., 2015, vol. 20, no. 6, pp. 752–766.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chaplygin, S. A., On the Theory of Motion of Nonholonomic Systems. The Reducing-Multiplier Theorem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 369–376; see also: Mat. Sb., 1912, vol. 28, no. 2, pp. 303–314.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Borisov, A. V. and Mamaev, I. S., Symmetries and Reduction in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 553–604.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Euler, L., Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti: Additamentum 1. De curvis elasticis, Lausanne: Bousquet, 1744, pp. 245–310.Google Scholar
  20. 20.
    Sachkov, Yu. L. and Sachkova, E. F., Exponential Mapping in Euler’s Elastic Problem, J. Dyn. Contr. Syst., 2014, vol. 20, no. 4, pp. 443–464.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ardentov, A. A., Multiple Solutions in Euler’s Elastic Problem, Autom. Remote Control, 2018, vol. 79, no. 7, pp. 1191–1206; see also: Avtomat. i Telemekh., 2018, No. 7, pp. 22–40.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mumford, D., Elastica and Computer Vision, in Algebraic Geometry and Its Applications, C. Bajaj (Ed.), Berlin: Springer, 1994, pp. 491–506.CrossRefGoogle Scholar
  23. 23.
    Ardentov, A. A. and Sachkov, Yu. L., Solution to Euler’s Elastic Problem, Autom. Remote Control, 2009, vol. 70, no. 4, pp. 633–643; see also: Avtomatika i Telemekhanika, 2009, no. 4, pp. 78–88.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ardentov, A. A. and Smirnov, A. V., Controlling a Mobile Robot along Euler’s Elasticae, Program Systems: Theory and Applications, 2017, vol. 8, no. 4(35), pp. 163–178 (Russian).Google Scholar
  25. 25.
    Karavaev, Yu. L. and Kilin, A. A., Nonholonomic Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform: Theory and Experiments, Proc. Steklov Inst. Math., 2016, vol. 295, pp. 158–167; see also: Tr. Mat. Inst. Steklova, 2016, vol. 295, pp. 174–183.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kilin, A. A. and Karavaev, Yu. L., Experimental Research of Dynamic of Spherical Robot of Combined Type, Nelin. Dinam., 2015, vol. 11, no. 4, pp. 721–734 (Russian).CrossRefzbMATHGoogle Scholar
  27. 27.
    Kilin, A.A. and Karavaev, Yu. L., The Kinematic Control Model for a Spherical Robot with an Unbalanced Internal Omniwheel Platform, Nelin. Dinam., 2014, vol. 10, no. 4, pp. 497–511 (Russian).CrossRefzbMATHGoogle Scholar
  28. 28.
    Bizyaev, I. A., The Inertial Motion of a Roller Racer, Regul. Chaotic Dyn., 2017, vol. 22, no. 3, pp. 239–247.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ardentov, A. A. and Sachkov, Y. L., Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group, Regul. Chaotic Dyn., 2017, vol. 22, no. 8, pp. 909–936.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Bizyaev, I. A., Borisov, A. V., Mamaev, I. S., The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration, Regul. Chaotic Dyn., 2017, vol. 22, no. 8, pp. 955–975.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kuznetsov, S. P., Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint, Regul. Chaotic Dyn., 2018, vol. 23, no. 2, pp. 178–192.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Borisov, A. V. and Kuznetsov, S. P., Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body, Regul. Chaotic Dyn., 2018, vol. 23, nos. 7–8, pp. 803–820.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., Exotic Dynamics of Nonholonomic Roller Racer with Periodic Control, Regul. Chaotic Dyn., 2018, vol. 23, nos. 7–8, pp. 983–994.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Kiselev, O. M., Stable Feedback Control of a Fast Wheeled Robot, Rus. J. Nonlin. Dyn., 2018, vol. 14, no. 3, pp. 409–417.MathSciNetGoogle Scholar
  35. 35.
    Sachkov, Y. L., Optimal Bang-Bang Trajectories in Sub-Finsler Problem on the Cartan Group, Rus. J. Nonlin. Dyn., 2018, vol. 14, no. 4, pp. 583–593.MathSciNetGoogle Scholar
  36. 36.
    Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., Chaplygin Sleigh with Periodically Oscillating Internal Mass, Europhys. Lett., 2017, vol. 119, no. 6, 60008, 7pp.CrossRefGoogle Scholar
  37. 37.
    Borisov, A. V., Mamaev, I. S., Kilin, A. A., Bizyaev, I. A., Qualitative Analysis of the Dynamics of a Wheeled Vehicle, Rus. J. Nonlin. Dyn., 2015, vol. 20, no. 6, pp. 739–751.MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ailamazyan Program Systems Institute of RASPereslavl-Zalessky, Yaroslavl RegionRussia
  2. 2.Center for Technologies in Robotics and Mechatronics ComponentsInnopolis UniversityInnopolisRussia
  3. 3.Izhevsk State Technical UniversityIzhevskRussia

Personalised recommendations