Regular and Chaotic Dynamics

, Volume 24, Issue 1, pp 101–113 | Cite as

Integrability and Chaos in Vortex Lattice Dynamics

  • Alexander A. KilinEmail author
  • Elizaveta M. Artemova


This paper is concerned with the problem of the interaction of vortex lattices, which is equivalent to the problem of the motion of point vortices on a torus. It is shown that the dynamics of a system of two vortices does not depend qualitatively on their strengths. Steadystate configurations are found and their stability is investigated. For two vortex lattices it is also shown that, in absolute space, vortices move along closed trajectories except for the case of a vortex pair. The problems of the motion of three and four vortex lattices with nonzero total strength are considered. For three vortices, a reduction to the level set of first integrals is performed. The nonintegrability of this problem is numerically shown. It is demonstrated that the equations of motion of four vortices on a torus admit an invariant manifold which corresponds to centrally symmetric vortex configurations. Equations of motion of four vortices on this invariant manifold and on a fixed level set of first integrals are obtained and their nonintegrability is numerically proved.


vortices on a torus vortex lattices point vortices nonintegrability chaos invariant manifold Poincaré map topological analysis numerical analysis accuracy of calculations reduction reduced system 

MSC2010 numbers:

76B47 70H05 37Jxx 34Cxx 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aref, H., Motion of Three Vortices, Phys. Fluids, 1988, vol. 31, no. 6. pp. 1392–1409.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., and Vainchtein, D., Vortex Crystals, in Advances in Applied Mechanics: Vol. 39, E. van der Giessen, H. Aref (Eds.), San Diego: Acad. Press, 2003, pp. 1–79.Google Scholar
  3. 3.
    Aref, H. and Stremler, M.A., On the Motion of Three Point Vortices in a Periodic Strip, J. Fluid Mech., 2006, vol. 314, pp. 1–25.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bogomolov, V.A., Dynamics of the Vorticity on a Sphere, Fluid Dynam., 1977, vol. 12, no. 6, pp. 863–870; see also: Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 1977, no. 6, pp. 57–65.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Borisov, A. V. and Kilin, A.A., Stability of Thomson’s Configurations of Vortices on a Sphere, Regul. Chaotic Dyn., 2000, vol. 5, no. 2, pp. 189–200.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., A New Integrable Problem of Motion of Point Vortices on the Sphere, Nelin. Dinam., 2007, vol. 3, no. 2, pp. 211–223 (Russian).CrossRefGoogle Scholar
  7. 7.
    Borisov, A.V., Kilin, A.A., and Mamaev, I. S., The Dynamics of Vortex Rings: Leapfrogging, Choreographies and the Stability Problem, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 33–62.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Borisov, A. V. and Lebedev, V.G., Dynamics of Three Vortices on a Plane and a Sphere: 3. Noncompact Case. Problems of Collapse and Scattering, Regul. Chaotic Dyn., 1998, vol. 3, no. 4, pp. 74–86.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Borisov, A.V. and Mamaev, I. S., Mathematical Methods in the Dynamics of Vortex Structures, Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).Google Scholar
  10. 10.
    Borisov, A. V., Mamaev, I. S., and Kilin, A.A., Absolute and Relative Choreographies in the Problem of Point Vortices Moving on a Plane, Regul. Chaotic Dyn., 2004, vol. 9, no. 2, pp. 101–111.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Borisov, A. V., Mamaev, I. S., and Kilin, A.A., Reduction and Chaotic Behavior of Point Vortices on a Plane and a Sphere, Nelin. Dinam., 2005, vol. 1, no. 2, pp. 233–246 (Russian).CrossRefzbMATHGoogle Scholar
  12. 12.
    Borisov, A. V., Mamaev, I. S., and Kilin, A.A., Transition to Chaos in Dynamics of Four Point Vortices on a Plane, Dokl. Phys., 2006, vol. 51, no. 5, pp. 262–267; see also: Dokl. Akad. Nauk, 2006, vol. 408, no. 1, pp. 49–54.CrossRefzbMATHGoogle Scholar
  13. 13.
    Castilla, M. S.A.C., Moauro, V., Negrini, P., and Oliva, W. M., The Four Positive Vortices Problem: Regions of Chaotic Behavior and Non-Integrability, Ann. Inst. H. Poincaré Phys. Théor., 1993, vol. 59, no. 1, pp. 99–115.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Fridman, A.A. and Polubarinova, P.Ya., On Moving Singularities of a Flat Motion of an Incompressible Fluid, Geofiz. Sb., 1928, vol. 5, no. 2, pp. 9–23 (Russian).Google Scholar
  15. 15.
    Gromeka, I. S., On Vortex Motions of a Liquid on a Sphere, Uchen. Zap. Imp. Kazan. Univ., 1885, no. 3, pp. 202–236 (Russian).Google Scholar
  16. 16.
    Hairer, E., Nørsett, S.P., and Wanner, G., Solving Ordinary Differential Equations: 1. Nonstiff Problems, 2nd ed., rev., Springer Ser. Comput. Math., vol. 8, Berlin: Springer, 1993.zbMATHGoogle Scholar
  17. 17.
    Kirchhoff, G., Vorlesungen Über mathematische Physik: Vol. 1. Mechanik, Leipzig: Teubner, 1876.zbMATHGoogle Scholar
  18. 18.
    Kochin, N.E., Kibel, I.A., and Roze, N.V., Theoretical Hydrodynamics, New York: Wiley, 1964.zbMATHGoogle Scholar
  19. 19.
    Koiller, J. and Carvalho, S.P., Non-Integrability of the 4-Vortex System: Analytical Proof, Comm. Math. Phys., 1989, vol. 120, no. 4, pp. 643–652.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lamb, H., Hydrodynamics, 6th ed., New York: Dover, 1945.Google Scholar
  21. 21.
    Meleshko, V.V. and Aref, H., A Bibliography of Vortex Dynamics 1858–1956, Adv. Appl. Mech., 2007, vol. 41, pp. 197–292.CrossRefGoogle Scholar
  22. 22.
    Novikov, E.A., Dynamics and Statistics of a System of Vortices, JETP, 1975, vol. 41, no. 5, pp. 937–943; see also: Zh. Éksper. Teoret. Fiz., 1975, vol. 68, no. 5, pp. 1868–1882.Google Scholar
  23. 23.
    O’Neil, K.A., On the Hamiltonian Dynamics of Vortex Lattices, J. Math. Phys., 1989, vol. 30, no. 6, pp. 1373–1379.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sakajo, T. and Shimizu, Y., Point Vortex Interactions on a Toroidal Surface, Proc. Roy. Soc. London Ser. A, 2016, vol. 472, no. 2191, 20160271, 24 pp.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Stremler, M.A. and Aref, H., Motion of Three Point Vortices in a Periodic Parallelogram, J. Fluid Mech., 1999, vol. 392, pp. 101–128.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tkachenko, V.K., Stability of Vortex Lattices, JETP, 1966, vol. 23, no. 6, pp. 1049–1056; see also: Zh. Èksper. Teoret. Fiz., 1966, vol. 50, no. 6, pp. 1573–1585.Google Scholar
  27. 27.
    von Kármán, Th., Über den Mechanismus des Widerstands, den ein bewegter Körper in einer FlÜssigkeit erfährt, Nachr. v. d. Gesellsch. d. Wiss. zu Göttingen, Math.-Phys. Klasse, 1911, vol. 1911, pp. 509–519.zbMATHGoogle Scholar
  28. 28.
    Weiss, J. B. and McWilliams, J.C., Nonergodicity of Point Vortices, Phys. Fluids A, 1991, vol. 3, no. 5, part 1, pp. 835–844.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ziglin, S. L., Nonintegrability of a Problem on the Motion of Four Point Vortices, Sov. Math. Dokl., 1980, vol. 21, no. 1, pp. 296–299; see also: Dokl. Akad. Nauk SSSR, 1980, vol. 250, no. 6, pp. 1296–1300.MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Udmurt State UniversityIzhevskRussia
  2. 2.Izhevsk State Technical UniversityIzhevskRussia

Personalised recommendations