Advertisement

Regular and Chaotic Dynamics

, Volume 23, Issue 7–8, pp 983–994 | Cite as

Exotic Dynamics of Nonholonomic Roller Racer with Periodic Control

  • Ivan A. BizyaevEmail author
  • Alexey V. Borisov
  • Ivan S. Mamaev
Article
  • 13 Downloads

Abstract

In this paper we consider the problem of the motion of the Roller Racer.We assume that the angle ϕ(t) between the platforms is a prescribed function of time. We prove that in this case the acceleration of the Roller Racer is unbounded. In this case, as the Roller Racer accelerates, the increase in the constraint reaction forces is also unbounded. Physically this means that, from a certain instant onward, the conditions of the rolling motion of the wheels without slipping are violated. Thus, we consider a model in which, in addition to the nonholonomic constraints, viscous friction force acts at the points of contact of the wheels. For this case we prove that there is no constant acceleration and all trajectories of the reduced system asymptotically tend to a periodic solution.

Keywords

Roller Racer speed-up nonholonomic mechanics Rayleigh dissipation function viscous friction integrability by quadratures control constraint reaction force 

MSC2010 numbers

37J60 37C10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bizyaev, I.A., The Inertial Motion of a Roller Racer, Regul. Chaotic Dyn., 2017, vol. 22, no. 3, pp. 239–247.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bizyaev, I. A., Borisov, A.V., and Kuznetsov, S.P., Chaplygin Sleigh with Periodically Oscillating Internal Mass, Europhys. Lett., 2017, vol. 119, no. 6, 60008, 7 pp.CrossRefGoogle Scholar
  3. 3.
    Bizyaev, I.A., Borisov, A.V., and Mamaev, I. S., The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration, Regul. Chaotic Dyn., 2017, vol. 22, no. 8, pp. 955–975.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bizyaev, I. A., Borisov, A.V., Kozlov, V. V., and Mamaev, I. S., Fermi-Like Acceleration and Power Law Energy Growth in Nonholonomic Systems, arXiv:1807.06262 (2018).Google Scholar
  5. 5.
    Bloch, A.M., Nonholonomic Mechanics and Control, Interdiscip. Appl. Math., vol. 24, New York: Springer-Verlag, 2003.Google Scholar
  6. 6.
    Bloch, A. M., Krishnaprasad, P. S., Marsden, J.E., and Murray, R. M., Nonholonomic Mechanical Systems with Symmetry, Arch. Rational Mech. Anal., 1996, vol. 136, no. 1, pp. 21–99.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Dynamics and Control of an Omniwheel Vehicle, Regul. Chaotic Dyn., 2015, vol. 20, no. 2, pp. 153–172.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., On the Hadamard–Hamel Problem and the Dynamics of Wheeled Vehicles, Regul. Chaotic Dyn., 2015, vol. 20, no. 6, pp. 752–766.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Invariant Submanifolds of Genus 5 and a Cantor Staircase in the Dynamics of a Snakeboard, submitted for publication in Internat. J. Bifur. Chaos Appl. Sci. Engrg. (2018).Google Scholar
  10. 10.
    Borisov, A.V. and Mamaev, I. S., The Dynamics of a Chaplygin Sleigh, J. Appl. Math. Mech., 2009, vol. 73, no. 2, pp. 156–161; see also: Prikl. Mat. Mekh., 2009, vol. 73, no. 2, pp. 219–225.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Borisov, A. V. and Mamaev, I. S., Symmetries and Reduction in NonholonomicMechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 553–604.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Borisov, A. V., Mamaev, I. S., Kilin, A.A., and Bizyaev, I.A., Qualitative Analysis of the Dynamics of a Wheeled Vehicle, Regul. Chaotic Dyn., 2015, vol. 20, no. 6, pp. 739–751.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bravo-Doddoli, A. and García-Naranjo, L.C., The Dynamics of an Articulated n-Trailer Vehicle, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 497–517.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chaplygin, S.A., On the Theory ofMotion of Nonholonomic Systems. The Reducing-Multiplier Theorem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 369–376; see also: Mat. Sb., 1912, vol. 28, no. 2, pp. 303–314.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kozlov, V.V., The Phenomenon of Reversal in the Euler–Poincaré–Suslov Nonholonomic Systems, J. Dyn. Control Syst., 2016, vol. 22, no. 4, pp. 713–724.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Krishnaprasad, P. S. and Tsakiris, D.P., Oscillations, SE(2)-Snakes and Motion Control: A Study of the Roller Racer, Dyn. Syst., 2001, vol. 16, no. 4, pp. 347–397.zbMATHGoogle Scholar
  17. 17.
    Leonard, N. E., Periodic Forcing, Dynamics and Control of Underactuated Spacecraft and Underwater Vehicles, in Proc. of the 34th IEEE Conf. on Decision and Control (New Orleans, La., Dec 1995), pp. 3980–3985.Google Scholar
  18. 18.
    Lewis, A. D., Ostrowskiy, J.P., Burdickz, J. W., and Murray, R. M., Nonholonomic Mechanics and Locomotion: The Snakeboard Example, in Proc. of the IEEE Internat. Conf. on Robotics and Automation (San Diego, Calif., May 1994), pp. 2391–2400.Google Scholar
  19. 19.
    Martynenko, Yu.G., Motion Control of Mobile Wheeled Robots, J. Math. Sci. (N. Y.), 2007, vol. 147, no. 2, pp. 6569–6606; see also: Fundam. Prikl. Mat., 2005, vol. 11, no. 8, pp. 29–80.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Murray, R. M. and Sastry, S. Sh., Nonholonomic Motion Planning: Steering Using Sinusoids, IEEE Trans. Automat. Control, 1993, vol. 38, no. 5, pp. 700–716.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ostrowski, J.P., The Mechanics and Control of Undulatory Robotic Locomotion: PhD Thesis, Pasadena,Calif., California Institute of Technology, 1995, 149 pp.Google Scholar
  22. 22.
    Ostrowski, J.P., Reduced Equations for Nonholonomic Mechanical Systems with Dissipative Forces, Rep. Math. Phys., 1998, vol. 42, nos. 1–2, pp. 185–209.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rocard, Y., L’instabilité en mécanique: Automobiles, avions, ponts suspendus, Paris: Masson, 1954.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Ivan A. Bizyaev
    • 1
    • 2
    Email author
  • Alexey V. Borisov
    • 1
  • Ivan S. Mamaev
    • 3
  1. 1.Udmurt State UniversityIzhevskRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  3. 3.M. T. Kalashnikov Izhevsk State Technical UniversityIzhevskRussia

Personalised recommendations