Advertisement

Regular and Chaotic Dynamics

, Volume 23, Issue 7–8, pp 850–874 | Cite as

Self-propulsion of a Smooth Body in a Viscous Fluid Under Periodic Oscillations of a Rotor and Circulation

  • Alexey V. BorisovEmail author
  • Ivan S. Mamaev
  • Evgeny V. Vetchanin
Article
  • 1 Downloads

Abstract

This paper addresses the problem of the self-propulsion of a smooth body in a fluid by periodic oscillations of the internal rotor and circulation. In the case of zero dissipation and constant circulation, it is shown using methods of KAM theory that the kinetic energy of the system is a bounded function of time. In the case of constant nonzero circulation, the trajectories of the center of mass of the system lie in a bounded region of the plane. The method of expansion by a small parameter is used to approximately construct a solution corresponding to directed motion of a circular foil in the presence of dissipation and variable circulation. Analysis of this approximate solution has shown that a speed-up is possible in the system in the presence of variable circulation and in the absence of resistance to translational motion. It is shown that, in the case of an elliptic foil, directed motion is also possible. To explore the dynamics of the system in the general case, bifurcation diagrams, a chart of dynamical regimes and a chart of the largest Lyapunov exponent are plotted. It is shown that the transition to chaos occurs through a cascade of period-doubling bifurcations.

Keywords

self-propulsion in a fluid smooth body viscous fluid periodic oscillation of circulation control of a rotor 

MSC2010 numbers

37Mxx 70Exx 76Dxx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bizyaev, I. A., Borisov, A.V., Kozlov, V. V., and Mamaev, I. S., Fermi-Like Acceleration and Power Law Energy Growth in Nonholonomic Systems, arXiv:1807.06262 (2018).Google Scholar
  2. 2.
    Borisov, A.V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).zbMATHGoogle Scholar
  3. 3.
    Borisov, A. V., Mamaev, I. S., and Vetchanin, E. V., Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation, Regul. Chaotic Dyn., 2018, vol. 23, no. 4, pp. 480–502.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brendelev, V. N., On the Realization of Constraints in Nonholonomic Mechanics, J. Appl. Math. Mech., 1981, vol. 45, no. 3, pp. 351–355; see also: Prikl. Mat. Mekh., 1981, vol. 45, no. 3, pp. 481–487.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chernous’ko, F. L., The Optimal Periodic Motions of a Two-Mass System in a Resistant Medium, J. Appl. Math. Mech., 2008, vol. 72, no. 2, pp. 116–125; see also: Prikl. Mat. Mekh., 2008, vol. 72, no. 2, pp. 202–215.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fedorov, Yu.N. and García-Naranjo, L.C., The Hydrodynamic Chaplygin Sleigh, J. Phys. A, 2010, vol. 43, no. 43, 434013, 18 pp.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gradshtein, I. S. and Ryzhik, I.M., Table of Integrals, Series, and Products, 7th ed., Amsterdam: Acad. Press, 2007.Google Scholar
  8. 8.
    Karapetyan, A.V., On Realizing Nonholonomic Constraints by Viscous Friction Forces and Celtic Stones Stability, J. Appl. Math. Mech., 1981, vol. 45, no. 1, pp. 30–36; see also: Prikl. Mat. Mekh., 1981, vol. 45, no. 1, pp. 42–51.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chaplygin, S.A., On the Action of a Plane-Parallel Air Flow upon a Cylindrical Wing Moving within It, in The Selected Works on Wing Theory of Sergei A. Chaplygin, San Francisco: Garbell Research Foundation, 1956, pp. 42–72.Google Scholar
  10. 10.
    Klenov, A. I. and Kilin, A.A., Influence of Vortex Structures on the Controlled Motion of an Above-Water Screwless Robot, Regul. Chaotic Dyn., 2016, vol. 21, nos. 7–8, pp. 927–938.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kozlov, V.V., On the Problem of Fall of a Rigid Body in a Resisting Medium, Mosc. Univ. Mech. Bull., 1990, vol. 45, no. 1, pp. 30–36; see also: Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1990, no. 1, pp. 79–86.zbMATHGoogle Scholar
  12. 12.
    Kozlov, V.V., Realization of Nonintegrable Constraints in Classical Mechanics, Sov. Phys. Dokl., 1983, vol. 28, pp. 735–737; see also: Dokl. Akad. Nauk SSSR, 1983, vol. 272, no. 3, pp. 550–554.zbMATHGoogle Scholar
  13. 13.
    Kozlov, V.V. and Ramodanov, S.M., The Motion of a Variable Body in an Ideal Fluid, J. Appl. Math. Mech., 2001, vol. 65, no. 4, pp. 579–587; see also: Prikl. Mat. Mekh., 2001, vol. 65, no. 4, pp. 592–601.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kozlov, V.V. and Onishchenko, D.A., The Motion in a Perfect Fluid of a Body Containing a Moving Point Mass, J. Appl. Math. Mech., 2003, vol. 67, no. 4, pp. 553–564; see also: Prikl. Mat. Mekh., 2003, vol. 67, no. 4, pp. 620–633.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kuznetsov, S.P., Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-Dimensional Models, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 345–382.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Krylov, N.M. and Bogolyubov, N.N., Introduction to Nonlinear Mechanics, Princeton: Princeton Univ. Press, 1950.Google Scholar
  17. 17.
    Lorenz, E.N., Deterministic Nonperiodic Flow, J. Atmos. Sci., 1963, vol. 20, no. 2, pp. 130–141.CrossRefzbMATHGoogle Scholar
  18. 18.
    Michelin, S. and Llewellyn Smith, S.G., An Unsteady Point Vortex Method for Coupled Fluid-Solid Problems, Theor. Comput. Fluid Dyn., 2009, vol. 23, no. 2, pp. 127–153.CrossRefzbMATHGoogle Scholar
  19. 19.
    Treschev, D. and Zubelevich, O., Introduction to the Perturbation Theory of Hamiltonian Systems, Springer Monogr. in Math., Berlin: Springer, 2010.CrossRefzbMATHGoogle Scholar
  20. 20.
    Vetchanin, E.V. and Mamaev, I. S., Dynamics of Two Point Vortices in an External Compressible Shear Flow, Regul. Chaotic Dyn., 2017, vol. 22, no. 8, pp. 893–908.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Vetchanin, E. V. and Kilin, A.A., Controlled Motion of a Rigid Body with Internal Mechanisms in an Ideal Incompressible Fluid, Proc. Steklov Inst. Math., 2016, vol. 295, pp. 302–332; see also: Tr. Mat. Inst. Steklova, 2016, vol. 295, pp. 321–351.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Vetchanin, E. V., Mamaev, I. S., and Tenenev, V. A., The Self-Propulsion of a Body with Moving Internal Masses in a Viscous Fluid, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 100–117.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Borisov, A. V., Vetchanin, E.V., and Kilin, A.A., Control Using Rotors of the Motion of a Triaxial Ellipsoid in a Fluid, Math. Notes, 2017, vol. 102, nos. 3–4, pp. 455–464; see also: Mat. Zametki, 2017, vol. 102, no. 4, pp. 503–513.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Vetchanin, E. V. and Kilin, A.A., Control of Body Motion in an Ideal Fluid Using the Internal Mass and the Rotor in the Presence of Circulation around the Body, J. Dyn. Control Syst., 2017, vol. 23, no. 2, pp. 435–458.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Borisov, A. V., Kozlov, V. V., and Mamaev, I. S., Asymptotic Stability and Associated Problems of Dynamics of Falling Rigid Body, Regul. Chaotic Dyn., 2007, vol. 12, no. 5, pp. 531–565.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Borisov, A.V. and Mamaev, I. S., On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation, Chaos, 2006, vol. 16, no. 1, 013118, 7 pp.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kaplan, J. L. and Yorke, J.A., A Chaotic Behavior of Multi-Dimensional Differential Equations, in Functional Differential Equations and Approximations of Fixed Points, H.-O. Peitgen, H.-O. Walther (Eds.), Lecture Notes in Math., vol. 730, Berlin: Springer, 1979, pp. 204–227.CrossRefGoogle Scholar
  28. 28.
    Frederickson, P., Kaplan, J. L., Yorke, E.D., and Yorke, J.A., The Liapunov dimension of strange attractors, Journal of Differential Equations, 1983, vol. 49, no. 2, pp. 185–207.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Alexey V. Borisov
    • 1
    Email author
  • Ivan S. Mamaev
    • 2
  • Evgeny V. Vetchanin
    • 3
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  2. 2.Izhevsk State Technical UniversityIzhevskRussia
  3. 3.Udmurt State UniversityIzhevskRussia

Personalised recommendations