Skip to main content
Log in

The Application of Lagrangian Descriptors to 3D Vector Fields

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

Since the 1980s, the application of concepts and ideas from dynamical systems theory to analyze phase space structures has provided a fundamental framework to understand long-term evolution of trajectories in many physical systems. In this context, for the study of fluid transport and mixing the development of Lagrangian techniques that can capture the complex and rich dynamics of time-dependent flows has been crucial. Many of these applications have been to atmospheric and oceanic flows in two-dimensional (2D) relevant scenarios. However, the geometrical structures that constitute the phase space structures in time-dependent three-dimensional (3D) flows require further exploration. In this paper we explore the capability of Lagrangian descriptors (LDs), a tool that has been successfully applied to time-dependent 2D vector fields, to reveal phase space geometrical structures in 3D vector fields. In particular, we show how LDs can be used to reveal phase space structures that govern and mediate phase space transport. We especially highlight the identification of normally hyperbolic invariant manifolds (NHIMs) and tori. We do this by applying this methodology to three specific dynamical systems: a 3D extension of the classical linear saddle system, a 3D extension of the classical Duffing system, and a geophysical fluid dynamics f-plane approximation model which is described by analytical wave solutions of the 3D Euler equations. We show that LDs successfully identify and recover the template of invariant manifolds that define the dynamics in phase space for these examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aref, H., Stirring by Chaotic Advection, J. Fluid Mech., 1984, vol. 143, pp. 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ottino, J.M., The Kinematics of Mixing: Stretching, Chaos and Transport, Cambridge: Cambridge Univ. Press, 1987.

    MATH  Google Scholar 

  3. Wiggins, S., The Dynamical Systems Approach to Lagrangian Transport in Oceanic Flows, Annu. Rev. Fluid Mech., 2005, vol. 37, pp. 295–328.

    Article  MathSciNet  MATH  Google Scholar 

  4. Mancho, A.M., Small, D., and Wiggins, S., A Tutorial on Dynamical Systems Concepts Applied to Lagrangian Transport in Oceanic Flows Defined as Finite Time Data Sets: Theoretical and Computational Issues, Phys. Rep., 2006, vol. 437, nos. 3–4, pp. 55–124.

    Article  Google Scholar 

  5. Prants, S.V., Dynamical Systems Theory Methods for Studying Mixing and Transport in the Ocean, Phys. Scr., 2013, vol. 87, no. 3, 0381115.

    Article  Google Scholar 

  6. Rom-Kedar, V., Leonard, A., and Wiggins, S., An Analytical Study of Transport, Mixing and Chaos in an Unsteady Vortical Flow, J. Fluid Mech., 1990, vol. 214, pp. 347–394.

    MATH  Google Scholar 

  7. Wiggins, S., Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Appl. Math. Sci., vol. 105, New York: Springer, 1994.

  8. Mezić, I. and Wiggins, S., On the Integrability and Perturbation of Three-Dimensional Fluid Flows with Symmetry, J. Nonlinear Sci., 1994, vol. 4, no. 2, pp. 157–194.

    MathSciNet  MATH  Google Scholar 

  9. Curbelo, J., García-Garrido, V. J., Mechoso, C.R., Mancho, A.M., Wiggins, S., and Niang, C., Insights into the Three-Dimensional Lagrangian Geometry of the Antarctic Polar Vortex, Nonlinear Proc. Geophys., 2017, vol. 24, no. 3, pp. 379–392.

    Article  Google Scholar 

  10. Curbelo, J., Mechoso, C.R., Mancho, A.M., Wiggins, S., Preprint (2018).

  11. Bettencort, J.H., López, Ch., and Hernández-García, E., Oceanic Three-Dimensional Lagrangian Coherent Structures: A Study of a Mesoscale Eddy in the Benguela Upwelling Region, Ocean Model., 2012, vol. 51. 73–83

    Article  Google Scholar 

  12. Branicki, M. and Kirwan, A.D., Jr., Stirring: The Eckart Paradigm Revisited, Int. J. Eng. Sci., 2010, vol. 48, no. 11, pp. 1027–1042.

    Article  MathSciNet  MATH  Google Scholar 

  13. Wiggins, S., Coherent Structures and Chaotic Advection in Three Dimensions, J. Fluid Mech., 2010, vol. 654, pp. 1–4.

    Article  MathSciNet  MATH  Google Scholar 

  14. Cartwright, J., Feingold, M., and Piro, O., Chaotic Advection in Three-Dimensional Unsteady Incompressible Laminar Flow, J. Fluid Mech., 1996, vol. 316, pp. 259–284.

    Article  MATH  Google Scholar 

  15. Pouransari, Z., Speetjens, M. F.M., and Clercx, H. J. H., Formation of Coherent Structures by Fluid Inertia in Three-Dimensional Laminar Flows, J. Fluid Mech., 2010, vol. 654, pp. 5–34.

    Article  MathSciNet  MATH  Google Scholar 

  16. Moharana, N.R., Speetjens, M. F.M., Trieling, R. R., and Clercx, H. J.H., Three-Dimensional Lagrangian Transport Phenomena in Unsteady Laminar Flows Driven by a Rotating Sphere, Phys. Fluids, 2013, vol. 25, no. 9, 093602, 23 pp.

    Article  Google Scholar 

  17. Rypina, I. I., Pratt, L. J., Wang, P., Özgökmen, T. M., and Mezić, I., Resonance Phenomena in a Time-Dependent, Three-Dimensional Model of an Idealized Eddy, Chaos, 2015, vol. 25, no. 8, 087401, 20 pp.

    MATH  Google Scholar 

  18. Branicki, M. and Wiggins, S., An Adaptive Method for Computing Invariant Manifolds in Non-Autonomous, Three-Dimensional Dynamical Systems, Phys. D, 2009, vol. 238, no. 16, pp. 1625–1657.

    MATH  Google Scholar 

  19. Bettencourt, J.H., López, C., Hernández-García, E., Montes, I., Sudre, J., Dewitte, B., Paulmier, A., and Garçon, V., Boundaries of the Peruvian Oxygen Minimum Zone Shaped by Coherent Mesoscale Dynamics, Nature Geosci., 2015, vol. 8, no. 12, pp. 937–940.

    Article  Google Scholar 

  20. Rutherford, B. and Dangelmayr, G., A Three-Dimensional Lagrangian Hurricane Eyewall Computation, Q. J. Royal Meteorol. Soc., 2010, vol. 136, no. 653, pp. 1931–1944.

    Article  Google Scholar 

  21. du Toit, Ph. C. and Marsden, J.E., Horseshoes in Hurricanes, J. Fixed Point Theory Appl., 2010, vol. 7, no. 2, pp. 351–384.

    Article  MathSciNet  MATH  Google Scholar 

  22. Lekien, F. and Ross, Sh. D., The Computation of Finite-Time Lyapunov Exponents on Unstructured Meshes and for Non-Euclidean Manifolds, Chaos, 2010, vol. 20, no. 1, 017505, 20 pp.

    Article  MathSciNet  MATH  Google Scholar 

  23. Rutherford, B., Dangelmayr, G., and Montgomery, M.T., Lagrangian Coherent Structures in Tropical Cyclone Intensification, Atmos. Chem. Phys., 2012, vol. 12, no. 12, pp. 5483–5507.

    Article  Google Scholar 

  24. Mendoza, C. and Mancho, A.M., Hidden Geometry of Ocean Flows, Phys. Rev. Lett., 2010, vol. 105, no. 3, 038501, 4 pp.

    Article  Google Scholar 

  25. Mendoza, C. and Mancho, A.M., Review Article: “The Lagrangian Description of Aperiodic Flows: A Case Study of the Kuroshio Current”, Nonlinear Proc. Geophys., 2012, vol. 19, no. 4, pp. 449–472.

    Article  Google Scholar 

  26. Wiggins, S. and Mancho, A.M., Barriers to Transport in Aperiodically Time-Dependent Two-Dimensional Velocity Fields: Nekhoroshev’s Theorem and “Nearly Invariant” Tori, Nonlinear Proc. Geophys., 2014, vol. 21, no. 1, pp. 165–185.

    Article  Google Scholar 

  27. García-Garrido, V. J., Mancho, A.M., Wiggins, S., and Mendoza, C., A Dynamical Systems Approach to the Surface Search for Debris Associated with the Disappearance of Flight MH370, Nonlinear Proc. Geophys., 2015, vol. 22, no. 6, pp. 701–712.

    Article  Google Scholar 

  28. García-Garrido, V. J., Ramos, A., Mancho, A.M., Coca, J., and Wiggins, S., A Dynamical Systems Perspective for a Real-Time Response to a Marine Oil Spill, Mar. Pollut. Bull., 2016, vol. 112, nos. 1–2, pp. 201–210.

    Article  Google Scholar 

  29. Ramos, A.G., García-Garrido, V. J., Mancho, A.M., Wiggins, S., Coca, J., Glenn, S., Schofield, O., Kohut, J., Aragon, D., Kerfoot, J., Haskins, T., Miles, T., Haldeman, C., Strandskov, N., Allsup, B., Jones, C., and Shapiro, J., Lagrangian Coherent Structure Assisted Path Planning for Transoceanic Autonomous Underwater Vehicle Missions, Sci. Rep., 2018, vol. 8, 4575, 9 pp.

    Article  Google Scholar 

  30. Junginger, A. and Hernandez, R., Uncovering the Geometry of Barrierless Reactions Using Lagrangian Descriptors, J. Phys. Chem. B, 2016, vol. 120, no. 8, pp. 1720–1725.

    Article  Google Scholar 

  31. Craven, G.T. and Hernandez, R., Deconstructing Field-Induced Ketene Isomerization through Lagrangian Descriptors, Phys. Chem. Chem. Phys., 2016, vol. 18, no. 5, pp. 4008–4018.

    Article  Google Scholar 

  32. Craven, G.T., Junginger, A., and Hernandez, R., Lagrangian Descriptors of Driven Chemical Reaction Manifolds, Phys. Rev. E, 2017, vol. 96, no. 2, 022222, 12 pp.

    Article  Google Scholar 

  33. Junginger, A., Craven, G. T., Bartsch, Th., Revuelta, F., Borondo, F., Benito, R.M., Hernandez, R., Transition State Geometry of Driven Chemical Reactions on Time-Dependent Double-Well Potentials, Phys. Chem. Chem. Phys., 2016, vol. 18, no. 44, pp. 30270–30281.

    Article  Google Scholar 

  34. Junginger, A., Duvenbeck, L., Feldmaier, M., Main, J., Wunner, G., and Hernandez, R., Chemical Dynamics between Wells across a Time-Dependent Barrier: Self-Similarity in the Lagrangian Descriptor and Reactive Basins, J. Chem. Phys., 2017, vol. 147, no. 6, 064101, 8 pp.

    Article  Google Scholar 

  35. Feldmaier, M., Junginger, A., Main, J., Wunner, G., and Hernandez, R., Obtaining Time-Dependent Multi-Dimensional Dividing Surfaces Using Lagrangian Descriptors, Chem. Phys. Lett., 2017, vol. 687, pp. 194–199.

    Article  Google Scholar 

  36. Revuelta, F., Craven, G.T., Bartsch, Th., Borondo, F., Benito, R.M., and Hernandez, R., Transition State Theory for Activated Systems with Driven Anharmonic Barriers, J. Chem. Phys., 2017, vol. 147, no. 7, 074104.

    Article  Google Scholar 

  37. Demian, A. S. and Wiggins, S., Detection of Periodic Orbits in Hamiltonian Systems Using Lagrangian Descriptors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2017, vol. 27, no. 14, 1750225, 9 pp.

    Article  MathSciNet  MATH  Google Scholar 

  38. Jiménez Madrid, J.A. and Mancho, A.M., Distinguished Trajectories in Time Dependent Vector Fields, Chaos, 2009, vol. 19, no. 1, 013111, 18 pp.

    Article  MathSciNet  Google Scholar 

  39. Mancho, A.M., Wiggins, S., Curbelo, J., and Mendoza, C., Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems, Commun. Nonlinear Sci. Numer. Simul., 2013, vol. 18, no. 12, pp. 3530–3557.

    Article  MathSciNet  MATH  Google Scholar 

  40. Mezić, I. and Wiggins, S., A Method for Visualization of Invariant Sets of Dynamical Systems Based on the Ergodic Partition, Chaos, 1999, vol. 9, no. 1, pp. 213–218.

    Article  MathSciNet  MATH  Google Scholar 

  41. Lopesino, C., Balibrea-Iniesta, F., García-Garrido, V. J., Wiggins, S., and Mancho, A.M., A Theoretical Framework for Lagrangian Descriptors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2017, vol. 27, no. 1, 1730001, 25 pp.

    Article  MathSciNet  MATH  Google Scholar 

  42. Curbelo, J., Mechoso, C.R., Mancho, A.M., Wiggins, S., Preprint (2018).

  43. Lopesino, C., Balibrea, F., Wiggins, S., and Mancho, A.M., LagrangianDescriptors for Two Dimensional, Area Preserving, Autonomous and Nonautonomous Maps, Commun. Nonlinear Sci. Numer. Simul., 2015, vol. 27, nos. 1–3, pp. 40–51.

    Article  Google Scholar 

  44. Ide, K., Small, D., and Wiggins, S., Distinguished Hyperbolic Trajectories in Time-Dependent Fluid Flows: Analytical and Computational Approach for Velocity Fields Defined As Data Sets, Nonlinear Proc. Geophys., 2002, vol. 9, nos. 3–4, pp. 237–263.

    Article  Google Scholar 

  45. Wiggins, S. and Holmes, Ph., Periodic Orbits in Slowly Varying Oscillators, SIAM J. Math. Anal., 1987, vol. 18, no. 3, pp. 592–611.

    Article  MathSciNet  MATH  Google Scholar 

  46. Wiggins, S. and Holmes, Ph., Homoclinic Orbits in Slowly Varying Oscillators, SIAM J. Math. Anal., 1987, vol. 18, no. 3, pp. 612–629.

    Article  MathSciNet  MATH  Google Scholar 

  47. Wiggins, S. and Holmes, Ph., Errata: “Homoclinic Orbits in Slowly Varying Oscillators” [SIAM J. Math. Anal., 1987, vol. 18, no. 3, pp. 612–629], SIAM J. Math. Anal., 1988, vol. 19, no. 5, pp. 1254–1255.

    Article  MathSciNet  Google Scholar 

  48. Malhotra, N., Mezić, I., and Wiggins, S., Patchiness: A New Diagnostic for Lagrangian Trajectory Analysis in Time-Dependent Fluid Flows, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1998, vol. 8, no. 6, pp. 1053–1093.

    Article  MathSciNet  MATH  Google Scholar 

  49. Poje, A.C., Haller, G., and Mezić, I., The Geometry and Statistics of Mixing in Aperiodic Flows, Phys. Fluids, 1999, vol. 11, no. 10, pp. 2963–2968.

    Article  MathSciNet  MATH  Google Scholar 

  50. Mezić, I. and Wiggins, S., A Method for Visualization of Invariant Sets of Dynamical Systems Based on the Ergodic Partition, Chaos, 1999, vol. 9, no. 1, pp. 213–218.

    Article  MathSciNet  MATH  Google Scholar 

  51. Y. Susuki, I. Mezić, Ergodic Partition of Phase Space in Continuous Dynamical Systems, in Proc. of the 48th IEEE Conference on Decision and Control, combined with the 28th Chinese Control Conference (Dec 16–18, 2009, Shanghai, China), pp. 7497–7502.

  52. Chang, H., Huntley, H. S., Kirwan, A.D., Jr., Lipphardt, B. L., Jr., and Sulman, M. H. M., Transport Structures in a 3D Periodic Flow, Commun. Nonlinear Sci. Numer. Simul., 2018, vol. 61, pp. 84–103.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor J. García-Garrido.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Garrido, V.J., Curbelo, J., Mancho, A.M. et al. The Application of Lagrangian Descriptors to 3D Vector Fields. Regul. Chaot. Dyn. 23, 551–568 (2018). https://doi.org/10.1134/S1560354718050052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354718050052

Keywords

MSC2010 numbers

Navigation