Regular and Chaotic Dynamics

, Volume 23, Issue 5, pp 519–529

# Dipole and Multipole Flows with Point Vortices and Vortex Sheets

• Kevin A. O’Neil
Article

## Abstract

An exact method is presented for obtaining uniformly translating distributions of vorticity in a two-dimensional ideal fluid, or equivalently, stationary distributions in the presence of a uniform background flow. These distributions are generalizations of the well-known vortex dipole and consist of a collection of point vortices and an equal number of bounded vortex sheets. Both the vorticity density of the vortex sheets and the velocity field of the fluid are expressed in terms of a simple rational function in which the point vortex positions and strengths appear as parameters. The vortex sheets lie on heteroclinic streamlines of the flow. Dipoles and multipoles that move parallel to a straight fluid boundary are also obtained. By setting the translation velocity to zero, equilibrium configurations of point vortices and vortex sheets are found.

## Keywords

point vortex vortex sheet equilibrium dipole

## MSC2010 numbers

76B47 37F10 34M15

## References

1. 1.
Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., and Vainchtein, D., Vortex Crystals, in Advances in Applied Mechanics: Vol. 39, E. van derGiessen, H. Aref (Eds.), San Diego: Acad. Press, 2003, pp. 1–79.Google Scholar
2. 2.
Burton, G.R., Rearrangements of Functions, Saddle Points and Uncountable Families of Steady Configurations for a Vortex, Acta Math., 1989, vol. 163, nos. 3–4, pp. 291–309.
3. 3.
Cao, D., Liu, Zh., and Wei, J., Regularization of Point Vortices Pairs for the Euler Equation in Dimension Two, Arch. Ration. Mech. Anal., 2014, vol. 212, no. 1, pp. 179–217.
4. 4.
Crowdy, D.G., Exact Solutions for Rotating Vortex Arrays with Finite-Area Cores, J. Fluid Mech., 2002, vol. 469, pp. 209–235.
5. 5.
Crowdy, D. and Marshall, J., Growing Vortex Patches, Phys. Fluids, 2004, vol. 16, no. 8, pp. 3122–3130.
6. 6.
Dritschel, D., The Stability and Energetics of Corotating Uniform Vortices, J. Fluid Mech., 1985, vol. 157, pp. 95–134.
7. 7.
Elcrat, A.R. and Miller, K. G., Rearrangements in Steady Multiple Vortex Flows, Comm. Partial Differential Equations, 1995, vol. 20, nos. 9–10, pp. 1481–1490.
8. 8.
Elcrat, A., Fornberg, B., Horn, M., and Miller, K., Some Steady Vortex Flows past a Circular Cylinder, J. Fluid Mech., 2000, vol. 409, pp. 13–27.
9. 9.
Elcrat, A., Ferlauto, M., and Zannetti, L., Point Vortex Model for Asymmetric Inviscid Wakes past Bluff Bodies, Fluid Dyn. Res., 2014, vol. 46, no. 3, 031407, 10 pp.
10. 10.
Gallizio, F., Iollo, A., Protas, B., and Zannetti, L., On Continuation of Inviscid Vortex Patches, Phys. D, 2010, vol. 239, nos. 3–4, pp. 190–201.
11. 11.
Miller, K. G., Stationary Corner Vortex Configurations, Z. Angew. Math. Phys., 1996, vol. 47, no. 1, pp. 39–56.
12. 12.
Moore, D. W., Saffman, P. G., and Tanveer, S., The Calculation of Some Batchelor Flows: The Sadovskii Vortex and Rotational Corner Flow, Phys. Fluids, 1988, vol. 31, pp. 978–990.
13. 13.
O’Neil, K.A., A Vortex Sheet/Point Vortex Dipole, in Proc. of the 24th International Congress of Theoretical and Applied Mechanics (ICTAM’2016, 21–26 Aug 2016, Montreal, Canada), 2 pp.Google Scholar
14. 14.
O’Neil, K.A., Collapse and Concentration of Vortex Sheets in Two-Dimensional Flow, Theor. Comput. Fluid Dyn., 2009, vol. 24, nos. 1–4, pp. 39–44.
15. 15.
Saffman, P.G. and Scheffield, J. S., Flow over a Wing with an Attached Free Vortex, Studies in Appl. Math., 1976/77, vol. 57, no. 2, pp. 107–117.
16. 16.
Saffman, P.G. and Szeto, R., Equilibrium Shapes of a Pair of Equal Uniform Vortices, Phys. Fluids, 1980, vol. 23, no. 12, pp. 2339–2342.
17. 17.
Strebel, K., Quadratic Differentials, Ergeb. Math. Grenzgeb. (3), vol. 5, Berlin: Springer, 1984.Google Scholar
18. 18.
Turkington, B., On Steady Vortex Flow in Two Dimensions: 1, Comm. Partial Differential Equations, 1983, vol. 8, no. 9, 999–1030.
19. 19.
Zannetti, L., Vortex Equilibrium in the Flow past Bluff Bodies, J. Fluid Mech., 2006, vol. 562, pp. 151–171.