Advertisement

Regular and Chaotic Dynamics

, Volume 23, Issue 5, pp 507–518 | Cite as

Generalized Contour Dynamics: A Review

  • Stefan G. Llewellyn Smith
  • Ching Chang
  • Tianyi Chu
  • Mark Blyth
  • Yuji Hattori
  • Hayder Salman
Article
  • 12 Downloads

Abstract

Contour dynamics is a computational technique to solve for the motion of vortices in incompressible inviscid flow. It is a Lagrangian technique in which the motion of contours is followed, and the velocity field moving the contours can be computed as integrals along the contours. Its best-known examples are in two dimensions, for which the vorticity between contours is taken to be constant and the vortices are vortex patches, and in axisymmetric flow for which the vorticity varies linearly with distance from the axis of symmetry. This review discusses generalizations that incorporate additional physics, in particular, buoyancy effects and magnetic fields, that take specific forms inside the vortices and preserve the contour dynamics structure. The extra physics can lead to time-dependent vortex sheets on the boundaries, whose evolution must be computed as part of the problem. The non-Boussinesq case, in which density differences can be important, leads to a coupled system for the evolution of both mean interfacial velocity and vortex sheet strength. Helical geometry is also discussed, in which two quantities are materially conserved and whose evolution governs the flow.

Keywords

vortex dynamics contour dynamics vortex patch vortex sheet helical geometry 

MSC2010 numbers

76B47 76W05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekseenko, S.V., Kuibin, P.A., and Okulov, V. L., Theory of Concentrated Vortices: An Introduction, Berlin: Springer, 2007.zbMATHGoogle Scholar
  2. 2.
    Baker, G. R., Meiron, D. I., and Orszag, S. A., Generalized Vortex Methods for Free-Surface Flow Problems, J. Fluid Mech., 1982, vol. 123, pp. 477–501.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ching, C. and Llewellyn Smith, S.G., An Axisymmetric Vortex Ring in the Non-Boussinesq Regime, in preparation (2018).Google Scholar
  4. 4.
    Chu, T., Llewellyn Smith, S.G., and Ching, C., Helical Contour Dynamics, in preparation (2018).Google Scholar
  5. 5.
    Crowdy, D.G. and Surana, A., Contour Dynamics in Complex Domains, J. Fluid Mech., 2007, vol. 593, pp. 235–254.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dritschel, D. G., Contour Dynamics and Contour Surgery: Numerical Algorithms for Extended, High-Resolution Modelling of Vortex Dynamics in Two-Dimensional, Inviscid, Incompressible Flows, Comput. Phys. Rep., 1989, vol. 10, no. 3, pp. 77–146.Google Scholar
  7. 7.
    Gorshkov, K.A., Ostrovsky, L. A., and Soustova, I.A., Perturbation Theory for Rankine Vortices, J. Fluid Mech., 2000, vol. 404, pp. 1–25.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Griffiths, R.M., Interaction of Vorticity and Internal Gravity Waves, PhD Thesis, Cambridge: Cambridge University, 1999.Google Scholar
  9. 9.
    Hattori, Y. and Moffatt, H. K., Evolution of Toroidal Magnetic Eddies in an Ideal Fluid, J. Fluid Mech., 2006, vol. 558, pp. 253–279.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hattori, Y. and Llewellyn Smith, S.G., Motion of Axisymmetric Magnetic Eddies with Swirl, Procedia IUTAM. 2013, vol. 7, pp. 243–250.CrossRefGoogle Scholar
  11. 11.
    Helmholtz, H., Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., 1858, vol. 55, pp. 25–55.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Krasny, R., Desingularization of Periodic Vortex Sheet Roll-Up, J. Comput. Phys., 1986, vol. 65, no. 2, pp. 292–313.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Landman, M. J., On the Generation of Helical Waves in Circular Pipe Flow, Phys. Fluids A, 1990, vol. 2, no. 5, pp. 738–747.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Llewellyn Smith, S.G. and Hattori, Y., Axisymmetric Magnetic Vortices with Swirl, Commun. Nonlinear Sci. Numer. Simul., 2012, vol. 17, no. 5, pp. 2101–2107.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Llewellyn Smith, S.G., How Do Singularities Move in Potential Flow?, Phys. D, 2011, vol. 240, no. 20, pp. 1644–1651.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Llewellyn Smith, S.G. and Tobias, S.M., Vortex Dynamos, J. Fluid Mech., 2004, vol. 498, pp. 1–21.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lucas, D. and Dritschel, D.G., A Family of Helically Symmetric Vortex Equilibria, J. Fluid Mech., 2009, vol. 634, pp. 245–268.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Meleshko, V.V. and Aref, H., A Bibliography of Vortex Dynamics 1858–1956, Adv. Appl. Mech., 2007, vol. 41, pp. 197–292.CrossRefGoogle Scholar
  19. 19.
    Newton, P.K., The N-Vortex Problem: Analytical Techniques, Appl. Math. Sci., vol. 145, New York: Springer, 2001.Google Scholar
  20. 20.
    Norbury, J., A Family of Steady Vortex Rings, J. Fluid Mech., 1973, vol. 57, no. 3, pp. 417–431.CrossRefzbMATHGoogle Scholar
  21. 21.
    Pozrikidis, C., Introduction to Theoretical and Computational Fluid Dynamics, 2nd ed., New York: Oxford University Press, 2011.zbMATHGoogle Scholar
  22. 22.
    Pozrikidis, C., The Nonlinear Instability of Hill’s Vortex, J. Fluid Mech., 1986, vol. 168, pp. 337–367.CrossRefzbMATHGoogle Scholar
  23. 23.
    Pullin, D. I., Contour Dynamics Methods, Annu. Rev. Fluid Mech., 1992, vol. 24, pp. 89–115.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Pullin, D. I. and Jacobs, P.A., Inviscid Evolution of Stretched Vortex Arrays, J. Fluid Mech., 1986, vol. 171, pp. 377–406.CrossRefzbMATHGoogle Scholar
  25. 25.
    Riley, N., The Fascination of Vortex Rings, Appl. Sci. Res., 1997, vol. 58, nos. 1–4, pp. 169–189.CrossRefzbMATHGoogle Scholar
  26. 26.
    Saffman, P.G., Vortex Dynamics, Cambridge: Cambridge Univ. Press, 1995.zbMATHGoogle Scholar
  27. 27.
    Shariff, K., Leonard, A., and Ferziger, J., A Contour Dynamics Algorithm for Axisymmetric Flow, J. Comput. Phys., 2008, vol. 227, no. 21, pp. 9044–9062.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Shariff, K., Leonard, A., and Ferziger, J., Dynamics of a Class of Vortex Rings, NASA Tech. Mem. 102257, Moffett Field,Calif.: Ames Res. Center, 1989.Google Scholar
  29. 29.
    Shin, S., Sohn, S.-I., and Hwang, W., Vortex Simulations of the Kelvin–Helmholtz Instability with Surface Tension in Density-Stratified Flows, Eur. J. Mech. B Fluids, 2018, vol. 67, pp. 168–177.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Tryggvason, G., Numerical Simulations of the Rayleigh–Taylor Instability, J. Comput. Phys., 1988, vol. 75, no. 2, pp. 253–282.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Vallis, G.K., Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2nd ed., Cambridge: Cambridge Univ. Press, 2017.CrossRefzbMATHGoogle Scholar
  32. 32.
    Wu, J.-Z., Ma, H.-Y., and Zhou, M.-D., Vorticity and Vortex Dynamics, Berlin: Springer, 2006.CrossRefGoogle Scholar
  33. 33.
    Wu, H.M., Overman, E. A. II, and Zabusky, N. J., Steady-State Solutions of the Euler Equations in Two Dimensions: Rotating and Translating V -States with Limiting Cases: 1. Numerical Algorithms and Results, J. Comput. Phys., 1984, vol. 53, no. 1, pp. 42–71.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zabusky, N. J., Hughes, M.H., and Roberts, K.V., Contour Dynamics for the Euler Equations in Two Dimensions, J. Comput. Phys., 1979, vol. 30, no. 1, pp. 96–106.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zabielski, L. and Mestel, A. J., Kinematic Dynamo Action in a Helical Pipe, J. Fluid Mech., 2005, vol. 535, pp. 347–367.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Stefan G. Llewellyn Smith
    • 1
    • 2
  • Ching Chang
    • 1
  • Tianyi Chu
    • 1
  • Mark Blyth
    • 3
  • Yuji Hattori
    • 4
  • Hayder Salman
    • 3
  1. 1.Department of Mechanical and Aerospace EngineeringJacobs School of EngineeringLa JollaUSA
  2. 2.Scripps Institution of OceanographyLa JollaUSA
  3. 3.School of MathematicsUniversity of East Anglia NorwichAngliaUK
  4. 4.Institute of Fluid ScienceTohoku University 2-1-1 KatahiraAoba, SendaiJapan

Personalised recommendations