Advertisement

Regular and Chaotic Dynamics

, Volume 23, Issue 5, pp 503–506 | Cite as

Foreword

Article
  • 14 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kozlov, V.V., Dynamical Systems 10: General Theory of Vortices, Encyclopaedia Math. Sci., vol. 67, Berlin: Springer, 2003.Google Scholar
  2. 2.
    Helmholtz, H., Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., 1858, vol. 55, pp. 25–55.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Poincaré, H., Théorie des tourbillons, Paris: Carré, 1893.zbMATHGoogle Scholar
  4. 4.
    Kirchhoff, G., Vorlesungen über mathematische Physik: Vol. 1. Mechanik, Leipzig: Teubner, 1876.zbMATHGoogle Scholar
  5. 5.
    Gröbli, W., Spezielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden, Zürich: Zürcher und Furrer, 1877; see also: Vierteljahresschr. Naturforsch. Ges. Zürich, 1877, vol. 22, pp. 37–81, 129–165.zbMATHGoogle Scholar
  6. 6.
    Goryachev, D. N., On Some Cases of Motion of Rectilinear Parallel Vortex Filaments, Magister Dissertation, Moscow: Imp. Moscow Univ., 1898 (Russian).Google Scholar
  7. 7.
    Synge, J. L., On the Motion of Three Vortices, Canadian J. Math., 1949, vol. 1, pp. 257–270.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge: Cambridge Univ. Press, 1967.zbMATHGoogle Scholar
  9. 9.
    Novikov, E.A., Dynamics and Statistics of a System of Vortices, JETP, 1975, vol. 41, no. 5, pp. 937–943; see also: Zh. Èksper. Teoret. Fiz., 1975, vol. 68, no. 5, pp. 1868–1882.Google Scholar
  10. 10.
    Aref, H., Motion of Three Vortices, Phys. Fluids, 1988, vol. 31. no. 6. pp. 1392–1409.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kurakin, L. G. and Yudovich, V. I., The Stability of Stationary Rotation of a Regular Vortex Polygon, Chaos, 2002, vol. 12, no. 3, pp. 574–595.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mayer, A.M., Floating Magnets, Nature, 1878, vol. 18, pp. 258–260.CrossRefGoogle Scholar
  13. 12a.
    Mayer, A.M., A Note on Experiments with Floating Magnets, Am. J. Sci. Arts, Ser.3, 1878, vol. 15, no. 88, pp. 276–277.Google Scholar
  14. 12b.
    Mayer, A. M., On the Morphological Laws of the Configurations Formed by Magnets Floating Vertically and Subjected to the Attraction of a Superposed Magnet; with Notes on Some of the Phenomena in Molecular Structure Which These Experiments May Serve to Explain and Illustrate, Am. J. Sci. Arts, Ser. 3, 1878, vol. 16, no. 94, pp. 247–256; see also: Philos. Mag. (5), 1879, vol. 7, pp. 98–108.Google Scholar
  15. 13.
    Tavantzis, J. and Ting, L., The Dynamics of Three Vortices Revisited, Phys. Fluids, 1988, vol. 31, no. 6, pp. 1392–1409.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 14.
    Havelock, T.H., The Stability of Motion of Rectilinear Vortices in Ring Formation, Philos. Mag., 1931, vol. 11, no. 70, pp. 617–633.CrossRefzbMATHGoogle Scholar
  17. 15.
    Mertz, G. T., Stability of Body-Centered Polygonal Configurations of Ideal Vortices, Phys. Fluids, 1978, vol. 21, no. 7, pp. 1092–1095.CrossRefzbMATHGoogle Scholar
  18. 16.
    Borisov, A. V. and Kilin, A.A., Stability of Thomson’s Configurations of Vortices on a Sphere, Regul. Chaotic Dyn., 2000, vol. 5, no. 2, pp. 189–200.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 17.
    Newton, P.K., The N-Vortex Problem: Analytical Techniques, Appl. Math. Sci., vol. 145, New York: Springer, 2001.Google Scholar
  20. 18.
    Kozlov, V.V., Dynamical Systems 10: General Theory of Vortices, Encyclopaedia Math. Sci., vol. 67, Berlin: Springer, 2003.Google Scholar
  21. 19.
    Borisov, A.V. and Mamaev, I. S., Mathematical Methods in the Dynamics of Vortex Structures, Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).zbMATHGoogle Scholar
  22. 20.
    Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., and Vainchtein, D., Vortex Crystals, in Advances in Applied Mechanics: Vol. 39, E. van derGiessen, H. Aref (Eds.), San Diego: Acad. Press, 2003, pp. 1–79.Google Scholar
  23. 21.
    Meleshko, V.V. and Konstantinov, M.Yu., Dynamics of Vortex Structures, Kiev: Naukova Dumka, 1993 (Russian).Google Scholar
  24. 22.
    Meleshko, V. V. and Aref, H., A Bibliography of Vortex Dynamics 1858–1956, Adv. Appl. Mech., 2007, vol. 41, pp. 197–292.CrossRefGoogle Scholar
  25. 23.
    IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25–30 August, 2006), A.V. Borisov, V.V. Kozlov, I. S.Mamaev, and M.A. Sokolovisky (Eds.), Dordrecht: Springer, 2008.Google Scholar
  26. 24.
    IUTAM Symposium ”150 Years of Vortex Dynamics” (Denmark, 12–16 October, 2008), Aref H. (Ed.), Dordrecht: Springer, 2010.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Personalised recommendations