Regular and Chaotic Dynamics

, Volume 23, Issue 3, pp 325–338 | Cite as

Stability and Noise-induced Transitions in an Ensemble of Nonlocally Coupled Chaotic Maps

  • Andrei V. BukhEmail author
  • Andrei V. Slepnev
  • Vadim S. Anishchenko
  • Tatiana E. Vadivasova


The influence of noise on chimera states arising in ensembles of nonlocally coupled chaotic maps is studied. There are two types of chimera structures that can be obtained in such ensembles: phase and amplitude chimera states. In this work, a series of numerical experiments is carried out to uncover the impact of noise on both types of chimeras. The noise influence on a chimera state in the regime of periodic dynamics results in the transition to chaotic dynamics. At the same time, the transformation of incoherence clusters of the phase chimera to incoherence clusters of the amplitude chimera occurs. Moreover, it is established that the noise impact may result in the appearance of a cluster with incoherent behavior in the middle of a coherence cluster.


chimera states noise influence ensembles of coupled maps logistic map Ricker’s map 

MSC2010 numbers

65L99 65Z05 37B25 37M05 37N30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by DFG in the framework of SFB 910. A.V.S. and V.S.A. acknowledge support of the Russian Science Foundation (project No. 16-12-10175). T.E.V. acknowledges support of the Ministry of Education and Science of the Russian Federation (project code 3.8616.2017/BC).


  1. 1.
    Abrams, D. M. and Strogatz, S. H., Chimera States for Coupled Oscillators, Phys. Rev. Lett., 2004, vol. 93, no. 17, 174102, 4 pp.CrossRefGoogle Scholar
  2. 2.
    Bogomolov, S., Slepnev, A., Strelkova, G., Schöll, E., and Anishchenko, V., Mechanisms of Appearance of Amplitude and Phase Chimera States in Ensembles of Nonlocally Coupled Chaotic Systems, Commun. Nonlinear Sci. Numer. Simul., 2017, vol. 43, pp. 25–36.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1. Theory, Meccanica, 1980, vol. 15, pp. 9–20.CrossRefzbMATHGoogle Scholar
  4. 4.
    Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 2. Numerical Application, Meccanica, 1980, vol. 15, pp. 21–30.CrossRefzbMATHGoogle Scholar
  5. 5.
    Böhm, F., Zakharova, A., Schöll, E., and Lüdge, K., Amplitude-Phase Coupling Drives Chimera States in Globally Coupled Laser Networks, Phys. Rev. E, 2015, vol. 91, no. 4, 040901(R), 6 pp.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Clerc, M. G., Coulibaly, S., Ferré, M. A., García-˜Nustes, M. A., and Rojas, R. G., Chimera-Type States Induced by Local Coupling, Phys. Rev. E, 2016, vol. 93, no. 5, 052204, 5 pp.CrossRefGoogle Scholar
  7. 7.
    Feigenbaum, M. J., Quantitative Universality for a Class of Nonlinear Transformations, J. Statist. Phys., 1978, vol. 19, no. 1, pp. 25–52.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    González-Avella, J.C., Cosenza, M.G. and San Miguel, M., Localized coherence in two interacting populations of social agents, Physica A, 2014, vol. 399, pp. 24–30.CrossRefGoogle Scholar
  9. 9.
    Hagerstrom, A.M., Murphy, Th. E., Roy, R., Hövel, P., Omelchenko, I., and Schöll, E., Experimental Observation of Chimeras in Coupled-Map Lattices, Nature Phys., 2012, vol. 8, pp. 658–661.CrossRefGoogle Scholar
  10. 10.
    Hizanidis, J., Kouvaris, N. E., Zamora-López, G., Díaz-Guilera, A. and Antonopoulos, C.G., Chimeralike States in Modular Neural Networks, Scientific Reports, 2016, vol. 6, 19845, 10 pp.CrossRefGoogle Scholar
  11. 11.
    Kapitaniak, T., Kuzma, P., Wojewoda, J., Czolczynski, K., and Maistrenko, Yu., Imperfect Chimera States for Coupled Pendula, Sci. Rep., 2014, vol. 4, Art. No. 6379, 4 pp.Google Scholar
  12. 12.
    Kouvaris, N.E., Requejo, R. J., Hizanidis, J. and Díaz-Guilera, A., Chimera states in a network-organized public goods game with destructive agents, Chaos, 2016, vol. 26, no. 12, 123108.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kuramoto, Y. and Battogtokh, D., Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators, Nonlin. Phen. in Comp. Syst., 2002, vol. 5, no. 4, pp. 380–385.Google Scholar
  14. 14.
    Laing, C.R., Chimeras in Networks with Purely Local Coupling, Phys. Rev. E, 2015, vol. 92, no. 5, 050904, 5 pp.CrossRefGoogle Scholar
  15. 15.
    Larger, L., Penkovsky, B., and Maistrenko, Yu., Virtual Chimera States for Delayed-Feedback Systems, Phys. Rev. Lett., 2013, vol. 111, no. 5, 054103, 5 pp.CrossRefGoogle Scholar
  16. 16.
    Loos, S. A. M., Claussen, J. Ch., Schöll, E., and Zakharova, A., Chimera Patterns under the Impact of Noise, Phys. Rev. E, 2016, vol. 93, no. 1, 012209, 12 pp.CrossRefGoogle Scholar
  17. 17.
    Martens, E. A., Thutupalli, S., Fourrière, A., and Hallatschek, O., Chimera States in Mechanical Oscillator Networks, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, no. 26, pp. 10563–10567.CrossRefGoogle Scholar
  18. 18.
    Mishra, A., Saha, S., Ghosh, D., Osipov, G. V. and Dana, S. K., Traveling Chimera Pattern in a Neuronal Network under Local Gap Junctional and Nonlocal Chemical Synaptic Interactions, Opera Medica et Physiologica, 2017, vol. 3, pp. 14–18.Google Scholar
  19. 19.
    Omelchenko, I., Maistrenko, Yu., Hövel, P., and Schöll, E., Loss of Coherence in Dynamical Networks: Spatial Chaos and Chimera States, Phys. Rev. Lett., 2011, vol. 106, no. 23, 234102, 4 pp.CrossRefGoogle Scholar
  20. 20.
    Omel’chenko, O.E., Wolfrum, M., Yanchuk, S., Maistrenko, Yu. L., and Sudakov, O., Stationary Patterns of Coherence and Incoherence in Two-Dimensional Arrays of Non-Locally-Coupled Phase Oscillators, Phys. Rev. E, 2012, vol. 85, no. 3, 036210, 5 pp.CrossRefGoogle Scholar
  21. 21.
    Panaggio, M. J. and Abrams, D.M., Chimera States: Coexistence of Coherence and Incoherence in Networks of Coupled Oscillators, Nonlinearity, 2015, vol. 28, no. 3, R67–R87.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E. and Roy, R., Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nature Communications, 2014, vol. 5, 4079, 8 pp.CrossRefGoogle Scholar
  23. 23.
    Rattenborg, N. C., Amlaner, C. J. and Lima, S. L., Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep, Neuroscience & Biobehavioral Reviews, 2000, vol. 24, pp. 817–842.CrossRefGoogle Scholar
  24. 24.
    Ricker, W. E., Stock and Recruitment, J. Fish. Res. Board Can., 1954, vol. 11, no. 5, pp. 559–623.CrossRefGoogle Scholar
  25. 25.
    Rosin, D. P., Rontani, D., Haynes, N. D., Schöll, E., and Gauthier, D. J., Transient Scaling and Resurgence of Chimera States in Networks of Boolean Phase Oscillators, Phys. Rev. E, 2014, vol. 90, no. 3, 030902, 5 pp.CrossRefGoogle Scholar
  26. 26.
    Semenov, V., Zakharova, A., Maistrenko, Yu., and Schöll, E., Delayed-Feedback Chimera States: Forced Multiclusters and Stochastic Resonance, Europhys. Lett., 2016, vol. 115, no. 1, 10005, 6 pp.CrossRefGoogle Scholar
  27. 27.
    Semenova, N. I., Strelkova, G. I., Anishchenko, V. S., and Zakharova, A., Temporal Intermittency and the Lifetime of Chimera States in Ensembles of Nonlocally Coupled Chaotic Oscillators, Chaos, 2017, vol. 27, no. 6, 061102, 6 pp.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Semenova, N., Zakharova, A., Anishchenko, V., and Schöll, E., Coherence-Resonance Chimeras in a Network of Excitable Elements, Phys. Rev. Lett., 2016, vol. 117, no. 1, 014102, 6 pp.CrossRefGoogle Scholar
  29. 29.
    Sethia, G.C. and Sen, A., Chimera States: The Existence Criteria Revisited, Phys. Rev. Lett., 2014, vol. 112, no. 14, 144101, 5 pp.CrossRefGoogle Scholar
  30. 30.
    Shena, J., Hizanidis, J., Kovanis, V. and Tsironis, G. P., Turbulent chimeras in large semiconductor laser arrays, Scientific Reports, 2017, vol. 7, 42116, 8 pp.CrossRefGoogle Scholar
  31. 31.
    Shepelev, I. A., Zakharova, A., and Vadivasova, T. E., Chimera Regimes in a Ring of Oscillators with Local Nonlinear Interaction, Commun. Nonlinear Sci. Numer. Simul., 2017, vol. 44, pp. 277–283.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Slepnev, A. V., Bukh, A. V., and Vadivasova, T. E., Stationary and Non-Stationary Chimeras in an Ensemble of Chaotic Self-Sustained Oscillators with Inertial Nonlinearity, Nonlinear Dynam., 2017, vol. 88, no. 4, pp. 2983–2992.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Tinsley, M. R., Nkomo, S., and Showalter, K., Chimera and Phase-Cluster States in Populations of Coupled Chemical Oscillators, Nature Phys., 2012, vol. 8, pp. 662–665.CrossRefGoogle Scholar
  34. 34.
    Vadivasova, T. E., Strelkova, G. I., Bogomolov, S.A., and Anishchenko, V. S., Correlation Analysis of the Coherence-Incoherence Transition in a Ring of Nonlocally Coupled Logistic Maps, Chaos, 2016, vol. 26, no. 9, 093108, 9 pp.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Yeldesbay, A., Pikovsky, A., and Rosenblum, M., Chimeralike States in an Ensemble of Globally Coupled Oscillators, Phys. Rev. Lett., 2014, vol. 112, no. 14, 144103, 5 pp.CrossRefGoogle Scholar
  36. 36.
    Zakharova, A., Kapeller, M., and Schöll, E., Chimera Death: Symmetry Breaking in Dynamical Networks, Phys. Rev. Lett., 2014, vol. 112, no. 15, 154101, 5 pp.CrossRefGoogle Scholar
  37. 37.
    Zakharova, A., Loos, S., Siebert, J., Gjurchinovski, A., and Schöll, E., Chimera Patterns: Influence of Time Delay and Noise, IFAC-PapersOnLine, 2015, vol. 48, no. 18, pp. 7–12.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Andrei V. Bukh
    • 1
    Email author
  • Andrei V. Slepnev
    • 1
  • Vadim S. Anishchenko
    • 1
  • Tatiana E. Vadivasova
    • 1
  1. 1.Saratov State UniversitySaratovRussia

Personalised recommendations