Regular and Chaotic Dynamics

, Volume 23, Issue 2, pp 212–225 | Cite as

Persistence Properties of Normally Hyperbolic Tori

Article
  • 14 Downloads

Abstract

Near-resonances between frequencies notoriously lead to small denominators when trying to prove persistence of invariant tori carrying quasi-periodic motion. In dissipative systems external parameters detuning the frequencies are needed so that Diophantine conditions can be formulated, which allow to solve the homological equation that yields a conjugacy between perturbed and unperturbed quasi-periodic tori. The parameter values for which the Diophantine conditions are not fulfilled form so-called resonance gaps. Normal hyperbolicity can guarantee invariance of the perturbed tori, if not their quasi-periodicity, for larger parameter ranges. For a 1-dimensional parameter space this allows to close almost all resonance gaps.

Keywords

KAM theory normally hyperbolic invariant manifold van der Pol oscillator Hopf bifurcation center-saddle bifurcation 

Keywords

37J40 37D10 37G35 37J20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braaksma, B. L. J. and Broer, H.W., On a Quasi-Periodic Hopf Bifurcation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1987, vol. 4, no. 2, pp. 115–168.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Braaksma, B. J. L., Broer, H.W., and Huitema, G.B., Toward a Quasi-Periodic Bifurcation Theory, Mem. Am. Math. Soc., 1990, vol. 83, no. 421, pp. 83–167.Google Scholar
  3. 3.
    Broer, H. W., Coupled Hopf-Bifurcations: Persistent Examples of n-Quasiperiodicity Determined by Families of 3-Jets, in Geometric Methods in Dynamics: 1, W. de Melo, M. Viana, J.-Ch. Yoccoz (Eds.), Asterisque, vol. 286, Paris: Soc. Math. France, 2003, pp. xix, 223–229.Google Scholar
  4. 4.
    Broer, H. W., Hanßmann, H., and Wagener, F. O. O., Quasi-Periodic Bifurcation Theory, the Geometry of KAM, Berlin: Springer, 2018 (in preparation).Google Scholar
  5. 5.
    Broer, H.W., Huitema, G.B., and Sevryuk, M.B., Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos, Lecture Notes in Math., vol. 1645, Berlin: Springer, 1996.MATHGoogle Scholar
  6. 6.
    Broer, H. W. and Takens, F., Dynamical Systems and Chaos, vol. 64, Utrecht: Epsilon Uitgaven, 2009; Appl. Math. Sci., vol. 172, New York: Springer, 2011.CrossRefMATHGoogle Scholar
  7. 7.
    Chenciner, A. and Iooss, G., Bifurcations de tores invariants, Arch. Rational Mech. Anal., 1979, vol. 69, no. 2, pp. 109–198.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ciocci, M.-C., Litvak-Hinenzon, A., and Broer, H.W., Survey on Dissipative KAM Theory including Quasi-Periodic Bifurcation Theory, in Geometric Mechanics and Symmetry: the Peyresq Lectures,, J. Montaldi, T. S. Raţiu (Eds.), London Math. Soc. Lecture Note Ser., vol. 306, Cambridge: Cambridge Univ. Press, 2005, pp. 303–355.CrossRefGoogle Scholar
  9. 9.
    Eldering, J., Normally Hyperbolic Invariant Manifolds. The Noncompact Case, Atlantis Stud. Dynam. Syst., vol. 2, Paris: Atlantis Press, 2013.CrossRefMATHGoogle Scholar
  10. 10.
    Eldering, J. and Hanßmann, H., Families of Hyperbolic Hamiltonian Tori, in preparation (2018).Google Scholar
  11. 11.
    Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., vol. 42, New York: Springer, 1983.CrossRefMATHGoogle Scholar
  12. 12.
    Hanßmann, H., The Quasi-Periodic Centre-Saddle Bifurcation, J. Differential Equations, 1998, vol. 142, no. 2, pp. 305–370.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hanßmann, H., Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems: Results and Examples, Lecture Notes in Math., vol. 1893, New York: Springer, 2007.Google Scholar
  14. 14.
    Hirsch, M.W., Pugh, C.C., and Shub, M., Invariant Manifolds, Lecture Notes in Math., vol. 583, New York: Springer, 1977.Google Scholar
  15. 15.
    Hausdorff, F., Set Theory, 2nd ed., New York: Chelsea, 1962.MATHGoogle Scholar
  16. 16.
    Laskar, J., Frequency Analysis for Multi-Dimensional Systems. Global Dynamics and Diffusion, Phys. D, 1993, vol. 67, nos. 1–3, pp. 257–281.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Mielke, A., Hamiltonian and Lagrangian Flows on Center Manifolds: With Applications to Elliptic Variational Problems, Lecture Notes in Math., vol. 1489, New York: Springer, 1991.CrossRefMATHGoogle Scholar
  18. 18.
    Moser, J., Convergent Series Expansions for Quasi-Periodic Motions, Math. Ann., 1976, vol. 169, no. 1, pp. 136–176.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Palacián, J. F., Sayas, F., and Yanguas, P., Flow Reconstruction and Invariant Tori in the Spatial Three-Body Problem, J. Differential Equations, 2015, vol. 258, no. 6, pp. 2114–2159.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Palis, J. and Takens, F., Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors, Cambridge Stud. Adv. Math., vol. 35, Cambridge: Cambridge Univ. Press, 1993.MATHGoogle Scholar
  21. 21.
    Rüssmann, H., Invariant Tori in Non-Degenerate Nearly Integrable Hamiltonian Systems, Regul. Chaotic Dyn., 2001, vol. 6, no. 2, pp. 119–204.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Saleh, K. and Wagener, F. O. O., Semi-Global Analysis of Periodic and Quasi-Periodic Normal-Internal k: 1 and k: 2 Resonances, Nonlinearity, 2010, vol. 23, no. 9, pp. 2219–2252.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    van Strien, S. J., Center Manifolds Are Not C8, Math. Z., 1979, vol. 166, no. 2, pp. 143–145.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Wagener, F. O. O., A Note on Gevrey Regular KAM Theory and the Inverse Approximation Lemma, Dyn. Syst., 2003, vol. 18, no. 2, pp. 159–163.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Wagener, F. O. O., A Parametrised Version of Moser’s Modifying Terms Theorem, Discrete Contin. Dyn. Syst. Ser. S, 2010, vol. 3, no. 4, pp. 719–768.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Johann Bernoulli Institute for Mathematics and Computer Science Rijksuniversiteit GroningenGroningenThe Netherlands
  2. 2.Mathematisch InstituutUniversiteit UtrechtUtrechtThe Netherlands
  3. 3.Center for Nonlinear Dynamics in Economics and Finance (CeNDEF) Amsterdam School of EconomicsUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations