Regular and Chaotic Dynamics

, Volume 23, Issue 2, pp 193–211 | Cite as

Suslov Problem with the Clebsch–Tisserand Potential

Article
  • 9 Downloads

Abstract

In this paper, we study a nonholonomic mechanical system, namely, the Suslov problem with the Clebsch–Tisserand potential. We analyze the topology of the level sets defined by the integrals in two ways: using an explicit construction and as a consequence of the Poincaré–Hopf theorem. We describe the flow on such manifolds.

Keywords

Suslov Problem topology of level sets nonholonomic systems rigid body Chaplygin systems 

Keywords

70F25 70G40 37J60 37J35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Suslov, G.K., Theoretical Mechanics, Moscow: Gostekhizdat, 1946, pp. 40–43 (Russian).Google Scholar
  2. 2.
    Bizyaev, I., Bolsinov, A., Borisov, A., and Mamaev, I., Topology and Bifurcations in Nonholonomic Mechanics, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2015, vol. 25, no. 10, 1530028, 21 pp.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bizyaev, I.A., Borisov, A.V., and Kazakov, A.O., Dynamics of the Suslov Problem in a Gravitational Field: Reversal and Strange Attractors, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 605–626.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Tatarinov, Ya.V., Construction of Non-Torical Invariant Manifolds in a Certain Integrable Nonholonomic Problem, Uspekhi Mat. Nauk, 1985, vol. 40, no. 5(245), p. 216 (Russian).Google Scholar
  5. 5.
    Tatarinov, Ya.V., Separation of Variables and New Topological Phenomena in Holonomic and Nonholonomic Systems, Tr. Sem. Vektor. Tenzor. Anal., 1988, vol. 23, pp. 160–174 (Russian).MathSciNetMATHGoogle Scholar
  6. 6.
    Fernandez, O.E., Bloch, A.M., and Zenkov, D. V., The Geometry and Integrability of the Suslov Problem, J. Math. Phys., 2014, vol. 55, no. 11, 112704, 14 pp.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kozlov, V.V., On the Integration Theory of Equations of Nonholonomic Mechanics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 161–176.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Okuneva, G.G., Qualitative Analysis of the Integrable Variants of the Suslov Nonholonomic Problem, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1987, no. 5, pp. 59–64 (Russian).MathSciNetGoogle Scholar
  9. 9.
    Okuneva, G.G., Integrable Variants of Non-Holonomic Rigid Body Problems, Z. Angew. Math. Mech., 1998, vol. 78, no. 12, pp. 833–840.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fedorov, Yu.N. and Jovanović, B., Quasi-Chaplygin Systems and Nonholonimic Rigid Body Dynamics, Lett. Math. Phys., 2006, vol. 76, nos. 2–3, pp. 215–230.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Hamiltonicity and Integrability of the Suslov Problem, Regul. Chaotic Dyn., 2011, vol. 16, nos. 1–2, pp. 104–116.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Vagner, V.V., A Geometric Interpretation of Nonholonomic Dynamical Systems, Tr. Semin. Vectorn. Tenzorn. Anal., 1941, no. 5, pp. 301–327 (Russian).MathSciNetMATHGoogle Scholar
  13. 13.
    Fomenko, A.T., Visual Geometry and Topology, Berlin: Springer, 1994.CrossRefMATHGoogle Scholar
  14. 14.
    Jauch, J. M. and Hill, E. L., On the Problem of Degeneracy in Quantum Mechanics, Phys. Rev., 1940, vol. 57, no. 7, pp. 641–645.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kalnins, E. G., Kress, J. M., Pogosyan, G. S., and Miller, W., Jr., Completeness of Superintegrability in Two-Dimensional Constant-Curvature Spaces, J. Phys. A, 2001, vol. 34, no. 22, pp. 4705–4720.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bizyaev, I.A., Borisov, A.V., and Mamaev, I. S., Superintegrable Generalizations of the Kepler and Hook Problems, Regul. Chaotic Dyn., 2014, vol. 19, no. 3, pp. 415–434.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gonera, C., On the Superintegrability of TTW Model, Phys. Lett. A, 2012, vol. 376, no. 35, pp. 2341–2343.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Rastelli, G. and Santoprete, M., Canonoid and Poissonoid Transformations, Symmetries and Bihamiltonian Structures, J. Geom. Mech., 2015, vol. 7, no. 4, pp. 483–515.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Milnor, J.W., Topology from the Differentiable Viewpoint, Princeton,N.J.: Princeton Univ. Press, 1997.MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsWilfrid Laurier University 75 University Avenue WestWaterlooCanada

Personalised recommendations