Regular and Chaotic Dynamics

, Volume 23, Issue 1, pp 54–59 | Cite as

Nonisometric Domains with the Same Marvizi – Melrose Invariants

  • Lev BuhovskyEmail author
  • Vadim Kaloshin


For any strictly convex planar domain Ω ⊂ R2 with a C boundary one can associate an infinite sequence of spectral invariants introduced by Marvizi–Merlose [5]. These invariants can generically be determined using the spectrum of the Dirichlet problem of the Laplace operator. A natural question asks if this collection is sufficient to determine Ω up to isometry. In this paper we give a counterexample, namely, we present two nonisometric domains Ω and \(\bar \Omega \) with the same collection of Marvizi–Melrose invariants. Moreover, each domain has countably many periodic orbits {Sn}n≥1 (resp. \({\left\{ {{{\bar S}^n}} \right\}_{n \geqslant 1}}\)) of period going to infinity such that Sn and \({\bar S^n}\) have the same period and perimeter for each n.


convex planar billiards length spectrum Laplace spectrum Marvizi – Melrose spectral invariants 

MSC2010 numbers

37D50 35P30 37E40 37J50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersson, K.G. and Melrose, R.B., The Propagation of Singularities along Gliding Rays, Invent. Math., 1977, vol. 41, no. 3, pp. 197–232.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Avila, A., De Simoi, J., and Kaloshin, V., An Integrable Deformation of an Ellipse of Small Eccentricity Is an Ellipse, Ann. of Math. (2), 2016, vol. 184, no. 2, pp. 527–558.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kac, M., Can One Hear the Shape of a Drum?, Amer. Math. Monthly, 1966, vol. 73, no. 4, part 2, pp. 1–23.Google Scholar
  4. 4.
    Lazutkin, V. F., The Existence of Caustics for a Billiard Problem in a Convex Domain, Math. USSRIzv., 1973, vol. 7, no. 1, pp. 185–214; see also: Izv. Akad. Nauk SSSR Ser. Mat., 1973, vol. 37, no. 1, pp. 186–216.zbMATHGoogle Scholar
  5. 5.
    Marvizi, Sh. and Melrose, R., Spectral Invariants of Convex Planar Regions, J. Differential Geom., 1982, vol. 17, no. 3, pp. 475–502.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Petkov, V.M. and Stoyanov, L.N., Geometry of Reflecting Rays and Inverse Spectral Problems, Pure Appl. Math. (N.Y.), Chichester: Wiley, 1992.zbMATHGoogle Scholar
  7. 7.
    Siburg, K. F., The Principle of Least Action in Geometry and Dynamics, Lecture Notes in Math., vol. 1844, Berlin: Springer, 2004.CrossRefzbMATHGoogle Scholar
  8. 8.
    Tabachnikov, S., Billiards, Panor. Synth., no. 1, Paris: Soc. Math. France, 1995.zbMATHGoogle Scholar
  9. 9.
    Zeldich, S., Survey on the Inverse Spectral Problem, arXiv:math/0402356 (2004).Google Scholar
  10. 10.
    Zeldich, S., Survey on the Inverse Spectral Problem, Notices of the International Congress of Chinese Mathematicians, 2014, vol. 2, no. 2, pp. 1–20.MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesTel Aviv UniversityRamat Aviv, Tel AvivIsrael
  2. 2.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations