Regular and Chaotic Dynamics

, Volume 22, Issue 6, pp 650–676

# Simple proofs and extensions of a result of L. D. Pustylnikov on the nonautonomous Siegel theorem

• Rafael de la Llave
Article

## Abstract

We present simple proofs of a result of L.D. Pustylnikov extending to nonautonomous dynamics the Siegel theorem of linearization of analytic mappings. We show that if a sequence f n of analytic mappings of C d has a common fixed point f n (0) = 0, and the maps f n converge to a linear mapping A∞ so fast that
$$\sum\limits_n {{{\left\| {{f_m} - {A_\infty }} \right\|}_{L\infty \left( B \right)}} < \infty }$$
$${A_\infty } = diag\left( {{e^{2\pi i{\omega _1}}},...,{e^{2\pi i{\omega _d}}}} \right)\omega = \left( {{\omega _1},...,{\omega _q}} \right) \in {\mathbb{R}^d},$$
then f n is nonautonomously conjugate to the linearization. That is, there exists a sequence h n of analytic mappings fixing the origin satisfying
$${h_{n + 1}} \circ {f_n} = {A_\infty }{h_n}.$$
The key point of the result is that the functions hn are defined in a large domain and they are bounded. We show that
$${\sum\nolimits_n {\left\| {{h_n} - Id} \right\|} _{L\infty (B)}} < \infty .$$
We also provide results when f n converges to a nonlinearizable mapping f∞ or to a nonelliptic linear mapping. In the case that the mappings f n preserve a geometric structure (e. g., symplectic, volume, contact, Poisson, etc.), we show that the hn can be chosen so that they preserve the same geometric structure as the f n . We present five elementary proofs based on different methods and compare them. Notably, we consider the results in the light of scattering theory. We hope that including different methods can serve as an introduction to methods to study conjugacy equations.

## Keywords

nonautonomous linearization scattering theory implicit function theorem deformations

## MSC2010 numbers

37C60 34C35 37F50 30D05 47J07

## References

1. 1.
Abraham, R. and Marsden, J.E., Foundations of Mechanics, Reading, Mass.: Benjamin/Cummings, 1978.Google Scholar
2. 2.
Arnol’d, V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd ed., Grundlehren Math. Wiss., vol. 250, New York: Springer, 1988.
3. 3.
Astakhov, S.A., Lee, E. A., and Farrelly, D., Formation of Kuiper-Belt Binaries through Multiple Chaotic Scattering Encounters with Low-Mass Intruders, Mon. Not. R. Astron. Soc., 2005, vol. 360, no. 2, pp. 401–415.
4. 4.
Banyaga, A., de la Llave, R., and Wayne, C.E., Cohomology Equations near Hyperbolic Points and Geometric Versions of Sternberg Linearization Theorem, J. Geom. Anal., 1996, vol. 6, no. 4, pp. 613–649.
5. 5.
Bartsch, Th., Revuelta, F., Benito, R.M., and Borondo, F., Reaction Rate Calculation with Time-Dependent Invariant Manifolds, J. Chem. Phys., 2012, vol. 136, no. 22, 224510, 17 pp.
6. 6.
Blazevski, D. and de la Llave, R., Time-Dependent Scattering Theory for ODEs and Applications to Reaction Dynamics, J. Phys. A, 2011, vol. 44, no. 19, 195101, 26 pp.
7. 7.
Brjuno, A.D., Analytic Form of Differential Equations: 1, Trans. Moscow Math. Soc., 1971, vol. 25, pp. 131–288; see also: Tr. Mosk. Mat. Obs., 1971, vol. 25, pp. 119–262.
8. 7a.
Brjuno, A.D., Analytic Form of Differential Equations: 2, Trans. Moscow Math. Soc., 1972, vol. 26, pp. 199–239; see also: Tr. Mosk. Mat. Obs., 1972, vol. 26, pp. 199–239.Google Scholar
9. 8.
Bruno, A.D., Local Methods in Nonlinear Differential Equations, Berlin: Springer, 1989.
10. 9.
Buslaev, V. and Pushnitski, A., The Scattering Matrix and Associated Formulas in Hamiltonian Mechanics, Comm. Math. Phys., 2010, vol. 293, no. 2, pp. 563–588.
11. 10.
Calleja, R. and de la Llave, R., A Numerically Accessible Criterion for the Breakdown of Quasi-Periodic Solutions and Its Rigorous Justification, Nonlinearity, 2010, vol. 23, no. 9, pp. 2029–2058.
12. 11.
Canadell, M. and de la Llave, R., KAM Tori andWhiskered Invariant Tori for Non-Autonomous Systems, Phys. D, 2015, vol. 310, pp. 104–113.
13. 12.
de la Llave, R., Marco, J.M., and Moriyón, R., Canonical Perturbation Theory of Anosov Systems and Regularity Results for the Livˇsic Cohomology Equation, Ann. of Math. (2), 1986, vol. 123, no. 3, pp. 537–611.
14. 13.
de la Llave, R., A Tutorial on KAM Theory, in Smooth Ergodic Theory and Its Applications (Seattle, Wash., 1999), A. Katok, R. de la Llave, Ya. Pesin, H. Weiss (Eds.), Proc. Sympos. Pure Math., vol. 69, Providence,R.I.: AMS, 2001, pp. 175–292.Google Scholar
15. 14.
de la Llave, R., Uniform Boundedness of Analytic Iterates Implies Linearizability: A Simple Proof and Extensions: Preprint (2017).Google Scholar
16. 15.
de la Llave, R., Introduction to KAM Theory, Izhevsk: Institute of Computer Science, 2003 (Russian).Google Scholar
17. 16.
DeLatte, D., Nonstationary Normal Forms and Cocycle Invariants, Random Comput. Dynam., 1992/93, vol. 1, no. 2, pp. 229–259.
18. 17.
DeLatte, D. and Gramchev, T., Biholomorphic Maps with Linear Parts Having Jordan Blocks: Linearization and Resonance Type Phenomena, Math. Phys. Electron. J., 2002, vol. 8, Paper 2, 27 pp.Google Scholar
19. 18.
Dereziński, J. and Gérard, Ch., Scattering Theory of Classical and Quantum N-Particle Systems, Texts Monogr. Phys., Berlin: Springer, 1997.
20. 19.
Dieudonné, J., Foundations of Modern Analysis, Pure Appl. Math., vol. 10, New York: Acad. Press, 1960.
21. 20.
Guysinsky, M., The Theory of Non-Stationary Normal Forms, Ergodic Theory Dynam. Systems, 2002, vol. 22, no. 3, pp. 845–862.
22. 21.
Hale, J.K., Ordinary Differential Equations, 2nd ed., Huntington,N.Y.: Krieger, 1980.
23. 22.
Herman, M.-R., Recent Results and Some Open Questions on Siegel’s Linearization Theorem of Germs of Complex Analytic Diffeomorphisms of C n near a Fixed Point, in Proc. of the 8th Internat. Congr. on Mathematical Physics (Marseille, 1986), Singapore: World Sci., 1987, pp. 138–184.Google Scholar
24. 23.
Krüger, T., Pustyl’nikov, L.D., and Troubetzkoy, S., The Nonautonomous Function-Theoretic Center Problem, Bol. Soc. Brasil. Mat. (N. S.), 1999, vol. 30, no. 1, pp. 1–30.
25. 24.
Mather, J., Anosov Diffeomorphisms, Bull. Amer. Math. Soc., 1967, vol. 73, no. 6, pp. 792–795. (Appendix to [36].)Google Scholar
26. 25.
Meyer, K. R., The Implicit Function Theorem and Analytic Differential Equations, in Dynamical Systems: Proc. Sympos. Appl. Topology and Dynamical Systems (Univ. Warwick, Coventry, 1973/1974): Presented to E.C. Zeeman on His Fiftieth Birthday, Lecture Notes in Math., vol. 468, New York: Springer, 1975, pp. 191–208.Google Scholar
27. 26.
Moser, J., On a Theorem of Anosov, J. Differential Equations, 1969, vol. 5, pp. 411–440.
28. 27.
Moser, J., On the Volume Elements on a Manifold, Trans. Amer. Math. Soc., 1965, vol. 120, pp. 286–294.
29. 28.
Moser, J., A Rapidly Convergent Iteration Method and Non-Linear Partial Differential Equations: 1, Ann. Scuola Norm. Sup. Pisa (3), 1966, vol. 20, pp. 265–315.
30. 29.
Nelson, E., Topics in Dynamics: 1. Flows. Mathematical Notes, Princeton,N.J.: Princeton Univ. Press, 1969.Google Scholar
31. 30.
Pustyl’nikov, L.D., A Generalization of Two Theorems of C. L. Siegel to the Nonautonomous Case, Uspehi Mat. Nauk, 1971, vol. 26, no. 4(160), pp. 245–246 (Russian).
32. 31.
Pustyl’nikov, L.D., Stable and Oscillating Motions in Nonautonomous Dynamical Systems: A Generalization of C.L. Siegel’s Theorem to the Nonautonomous Case, Math. USSR-Sb., 1974, vol. 23, no. 3, pp. 382–404; see also: Mat. Sb. (N. S.), 1974, vol. 94(136), no. 3(7), pp. 407–429.
33. 32.
Reed, M. and Simon, B., Methods of Modern Mathematical Physics: 3. Scattering Theory, New York: Acad. Press, 1979.
34. 33.
Saks, S. and Zygmund, A., Analytic Functions, 2nd ed., enl., Monogr. Matem., vol. 28, Warsaw: PWN, 1965.
35. 34.
Siegel, C. L., Iteration of Analytic Functions, Ann. of Math. (2), 1942, vol. 43, pp. 607–612.
36. 35.
Simon, B., Wave Operators for Classical Particle Scattering, Comm. Math. Phys., 1971, vol. 23, pp. 37–48.
37. 36.
Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc., 1967, vol. 73, no. 6, pp. 747–817.
38. 37.
Sternberg, Sh., Infinite Lie Groups and the Formal Aspects of Dynamical Systems, J. Math. Mech., 1961, vol. 10, pp. 451–474.
39. 38.
Thirring, W., Classical Mathematical Physics: Dynamical Systems and Field Theories, 3rd ed., New York: Springer, 1997.
40. 39.
Levine, H., Singularities of Differentiable Mappings, in Proc. of Singularities-Symposium I (Univ. of Liverpool, 1969/1970), C.T.Wall (Ed.), Lecture Notes in Math., vol. 192, Berlin: Springer, 1971, pp. 1–21.Google Scholar
41. 40.
Wheeler, J.A., On the Mathematical Description of Light Nuclei by the Method of Resonating Group Structure, Phys. Rev., 1937, vol. 52, no. 11, pp. 1107–1122.
42. 41.
Yomdin, Y., Nonautonomous Linearization, in Dynamical Systems (College Park,Md., 1986/87), Lecture Notes in Math., vol. 1342, Berlin: Springer, 1988, pp. 718–726.Google Scholar
43. 42.
Zehnder, E., A Simple Proof of a Generalization of a Theorem by C. L. Siegel, in Geometry and Topology: Proc. of the 3rd Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq (Rio de Janeiro, 1976), Lecture Notes in Math., vol. 597, Berlin: Springer, 1977, pp. 855–866.