Advertisement

Regular and Chaotic Dynamics

, Volume 22, Issue 4, pp 435–447 | Cite as

An inhomogeneous Chaplygin sleigh

  • Alexey V. Borisov
  • Ivan S. Mamaev
Article

Abstract

In this paper we investigate the dynamics of a system that is a generalization of the Chaplygin sleigh to the case of an inhomogeneous nonholonomic constraint. We perform an explicit integration and a sufficiently complete qualitative analysis of the dynamics.

Keywords

Chaplygin sleigh inhomogeneous nonholonomic constraints conservation laws qualitative analysis resonance 

MSC2010 numbers

37J60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bizyaev, I.A., The Inertial Motion of a Roller Racer, Regul. Chaotic Dyn., 2017, vol. 22, no. 3, pp. 239–247.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Hamiltonicity and Integrability of the Suslov Problem, Regul. Chaotic Dyn., 2011, vol. 16, nos. 1–2, pp. 104–116.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How to Control Chaplygin’s Sphere Using Rotors, Regul. Chaotic Dyn., 2012, vol. 17, nos. 3–4, pp. 258–272.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., The Problem of Drift and Recurrence for the Rolling Chaplygin Ball, Regul. Chaotic Dyn., 2013, vol. 18, no. 6, pp. 832–859.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Dynamics and Control of an Omniwheel Vehicle, Regul. Chaotic Dyn., 2015, vol. 20, no. 2, pp. 153–172.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., On the Hadamard–Hamel Problem and the Dynamics of Wheeled Vehicles, Regul. Chaotic Dyn., 2015, vol. 20, no. 6, pp. 752–766.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Borisov, A. V. and Kuznetsov, S.P., Regular and Chaotic Motions of Chaplygin Sleigh under Periodic Pulsed Torque Impacts, Regul. Chaotic Dyn., 2016, vol. 21, nos. 7–8, pp. 792–803.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Borisov, A.V. and Mamaev, I. S., Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems, Regul. Chaotic Dyn., 2008, vol. 13, no. 5, pp. 443–490.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Borisov, A. V. and Mamaev, I. S., The Dynamics of a Chaplygin Sleigh, J. Appl. Math. Mech., 2009, vol. 73, no. 2, pp. 156–161; see also: Prikl. Mat. Mekh., 2009, vol. 73, no. 2, pp. 219–225.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 277–328.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Jacobi Integral in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 383–400.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Carathéodory, C., Der Schlitten, Angew. Math. Mech., 1933, vol. 13, no. 2, pp. 71–76.CrossRefzbMATHGoogle Scholar
  13. 13.
    García-Naranjo, L.C., Maciejewski, A. J., Marrero, J.C., and Przybylska, M., The Inhomogeneous Suslov Problem, Phys. Lett. A, 2014, vol. 378, nos. 32–33, pp. 2389–2394.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Karavaev, Yu. L. and Kilin, A.A., Nonholonomic Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform: Theory and Experiments, Proc. Steklov Inst. Math., 2016, vol. 295, pp. 158–167; see also: Tr. Mat. Inst. Steklova, 2016, vol. 295, pp. 174–183.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rocard, Y., L’instabilité en mécanique: Automobiles, avions, ponts suspendus, Paris: Masson, 1954.Google Scholar
  16. 16.
    Fassò, F. and Sansonetto, N., Conservation of Energy and Momenta in Nonholonomic Systems with Affine Constraints, Regul. Chaotic Dyn., 2015, vol. 20, no. 4, pp. 449–462.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fedorov, Yu.N. and García-Naranjo, L.C., The Hydrodynamic Chaplygin Sleigh, J. Phys. A, 2010, vol. 43, no. 43, 434013, 18 pp.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kozlov, V.V., Dynamics of Systems with Nonintegrable Constraints: 3, Mosc. Univ. Mech. Bull., 1983, vol. 38, no. 3, pp. 40–51; see also: Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1983, no. 3, pp. 102–111.MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kozlov, V.V., Dynamics of Systems with Nonintegrable Constraints: 1, Mosc. Univ. Mech. Bull., 1982, vol. 37, nos. 3–4, pp. 27–34; see also: Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1982, no. 3, pp. 92–100.zbMATHGoogle Scholar
  20. 20.
    Kozlov, V.V., Dynamics of Systems with Nonintegrable Constraints: 2, Mosc. Univ. Mech. Bull., 1982, vol. 37, nos. 3–4, pp. 74–80; see also: Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1982, no. 4, pp. 70–76.zbMATHGoogle Scholar
  21. 21.
    Moshchuk, N.K., A Qualitative Analysis of the Motion of a Heavy Solid of Revolution on an Absolutely Rough Plane, J. Appl. Math. Mech., 1988, vol. 52, no. 2, pp. 159–165; see also: Prikl. Mat. Mekh., 1988, vol. 52, no. 2, pp. 203–210.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence,R.I.: AMS, 1972.zbMATHGoogle Scholar
  23. 23.
    Levin, M.A. and Fufaev, N.A., The Theory of Deformable Wheel Rolling, Moscow: Nauka, 1989 (Russian).Google Scholar
  24. 24.
    Chaplygin, S.A., On the Theory ofMotion of Nonholonomic Systems. The Reducing-Multiplier Theorem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 369–376; see also: Mat. Sb., 1912, vol. 28, no. 2, pp. 303–314.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations