Advertisement

Regular and Chaotic Dynamics

, Volume 22, Issue 4, pp 386–407 | Cite as

Rational integrability of trigonometric polynomial potentials on the flat torus

  • Thierry CombotEmail author
Article

Abstract

We consider a lattice ℒ ⊂ ℝ n and a trigonometric potential V with frequencies k ∈ ℒ. We then prove a strong rational integrability condition on V, using the support of its Fourier transform. We then use this condition to prove that a real trigonometric polynomial potential is rationally integrable if and only if it separates up to rotation of the coordinates. Removing the real condition, we also make a classification of rationally integrable potentials in dimensions 2 and 3 and recover several integrable cases. After a complex change of variables, these potentials become real and correspond to generalized Toda integrable potentials. Moreover, along the proof, some of them with high-degree first integrals are explicitly integrated.

Keywords

trigonometric polynomials differential Galois theory integrability Toda lattice 

MSC2010 numbers

37J30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, M. and van Moerbeke, P., Kowalewski’s Asymptotic Method, Kac–Moody Lie Algebras and Regularization, Comm. Math. Phys., 1982, vol. 83, no. 1, pp. 83–106.CrossRefzbMATHGoogle Scholar
  2. 2.
    Agapov, S.V. and Alexandrov, D.N., Fourth-Degree Polynomial Integrals of a Natural Mechanical System on a Two-Dimensional Torus, Math. Notes, 2013, vol. 93, no. 5, pp. 780–783; see also: Mat. Zametki, 2013, vol. 93, no. 5, pp. 790–793.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Borisov, A. V. and Mamaev, I. S., Necessary and Sufficient Conditions for the Polynomial Integrability of Generalized Toda Chains, Dokl. Math., 2004, vol. 69, no. 1, pp. 131–135; see also: Dokl. Akad. Nauk, 2004, vol. 394, no. 4, pp. 449–453.zbMATHGoogle Scholar
  4. 4.
    Chèze, G., Elkadi, M., Galligo, A., and Weimann, M., Absolute Factoring of Bidegree Bivariate Polynomials, ACM Commun. Comput. Algebra, 2009, vol. 42, no. 3, pp. 151–153.Google Scholar
  5. 5.
    Chèze, G. and Lecerf, G., Lifting and Recombination Techniques for Absolute Factorization, J. Complexity, 2007, vol. 23, no. 3, pp. 380–420.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Damianou, P.A. and Papageorgiou, V.G., On an Integrable Case of Kozlov–Treshchev–Birkhoff Integrable Potentials, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 160–171.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Deift, P., Li, L. C., Nanda, T., and Tomei, C., The Toda Flow on a Generic Orbit Is Integrable, Comm. Pure Appl. Math., 1986, vol. 39, no. 2, pp. 183–232.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Denisova, N.V. and Kozlov, V.V., Polynomial Integrals of Reversible Mechanical Systems with a Two-Dimensional Torus as Configuration Space, Sb. Math., 2000, vol. 191, nos. 1–2, pp. 189–208; see also: Mat. Sb., 2000, vol. 191, no. 2, pp. 43–63.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Denisova, N.V., Kozlov, V.V., and Treshchev, D.V., Remarks on Polynomial Integrals of Higher Degree for Reversible Systems with a Toral Configuration Space, Izv. Math., 2012, vol. 76, no. 5, pp. 907–921; see also: Izv. Ross. Akad. Nauk Ser. Mat., 2012, vol. 76, no. 5, pp. 57–72.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hietarinta, J., A Search for Integrable Two-Dimensional Hamiltonian Systems with Polynomial Potential, Phys. Lett. A, 1983, vol. 96, no. 6, pp. 273–278.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Inozemtsev, V. I., The Finite Toda Lattices, Comm. Math. Phys., 1989, vol. 121, no. 4, pp. 629–638.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kozlov, V.V. and Treshchev, D. V., The Integrability of Hamiltonian Systems with Configuration Space a Torus, Math. USSR-Sb., 1989, vol. 63, no. 1, pp. 121–139; see also: Mat. Sb. (N. S.), 1988, vol. 135(177), no. 1, pp. 119–138, 144.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kozlov, V.V. and Treshchev, D.V., Polynomial Integrals of Hamiltonian Systems with Exponential Interaction, Math. USSR-Izv., 1990, vol. 34, no. 3, pp. 555–574; see also: Izv. Akad. Nauk SSSR Ser. Mat., 1989, vol. 53, no. 3, pp. 537–556,671.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kozlov, V.V. and Denisova, N.V., Polynomial Integrals of Geodesic Flows on a Two-Dimensional Torus, Russian Acad. Sci. Sb. Math., 1995, vol. 83, no. 2, pp. 469–481; see also: Mat. Sb., 1994, vol. 185, no. 12, pp. 49–64.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Mironov, A. E., Polynomial Integrals of a Mechanical System on a Two-Dimensional Torus, Izv. Math., 2010, vol. 74, no. 4, pp. 805–817; see also: Izv. Ross. Akad. Nauk Ser. Mat., 2010, vol. 74, no. 4, pp. 145–156.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Moser, J., Finitely Many Mass Points on the Line under the Influence of an Exponential Potential — an Integrable System, in Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., vol. 38, Berlin: Springer, 1975, pp. 467–497.CrossRefGoogle Scholar
  17. 17.
    Ra˜nada, M. F., Lax Formalism for a Family of Integrable Toda-Related n-Particle Systems, J. Math. Phys., 1995, vol. 36, no. 12, pp. 6846–6856.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sawada, K. and Kotera, T., Toda Lattice as an Integrable System and the Uniqueness of Toda’s Potential, Prog. Theor. Phys. Suppl., 1976, vol. 59, pp. 101–106.CrossRefGoogle Scholar
  19. 19.
    Schicho, J., Rational Parametrization of Surfaces, J. Symbolic Comput., 1998, vol. 26, no. 1, pp. 1–29.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    van Moerbeke, P., Algebraic Complete Integrability of Hamiltonian Systems and Kac–Moody Lie Algebras, in Proc. of the Internat. Congr. of Math. (Warszawa, Aug 1983), pp. 881–899.Google Scholar
  21. 21.
    Ziglin, S. L., Bifurcation of Solutions and the Nonexistence of First Integrals in HamiltonianMechanics: 1, Funct. Anal. Appl., 1982, vol. 16, no. 3, pp. 181–189; see also: Funktsional. Anal. i Prilozhen., 1982, vol. 16, no. 3, pp. 30–41, 96.MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Scuola Normale SuperioreCentro di Ricerca Matematica Ennio De Giorgi, Laboratorio FibonacciPiazza CavalieriPisaItaly

Personalised recommendations