Regular and Chaotic Dynamics

, Volume 22, Issue 3, pp 272–297 | Cite as

Computational method for phase space transport with applications to lobe dynamics and rate of escape

  • Shibabrat Naik
  • Francois Lekien
  • Shane D. Ross


Lobe dynamics and escape from a potential well are general frameworks introduced to study phase space transport in chaotic dynamical systems.While the former approach studies how regions of phase space get transported by reducing the flow to a two-dimensional map, the latter approach studies the phase space structures that lead to critical events by crossing certain barriers. Lobe dynamics describes global transport in terms of lobes, parcels of phase space bounded by stable and unstable invariant manifolds associated to hyperbolic fixed points of the system. Escape from a potential well describes how the critical events occur and quantifies the rate of escape using the flux across the barriers. Both of these frameworks require computation of curves, intersection points, and the area bounded by the curves. We present a theory for classification of intersection points to compute the area bounded between the segments of the curves. This involves the partition of the intersection points into equivalence classes to apply the discrete form of Green’s theorem. We present numerical implementation of the theory, and an alternate method for curves with nontransverse intersections is also presented along with a method to insert points in the curve for densification.


chaotic dynamical systems numerical integration phase space transport lobe dynamics 

MSC2010 numbers

37J35 37M99 65D20 65D30 65P99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ross, Sh. D. and Tallapragada, P., Detecting and Exploiting Chaotic Transport in Mechanical Systems, in Applications of Chaos and Nonlinear Dynamics in Science and Engineering: Vol. 2, S. Banerjee, L. Rondoni, M. Mitra (Eds.), Berlin: Springer,2012, pp. 155–183.CrossRefGoogle Scholar
  2. 2.
    Rom-Kedar, V., Leonard, A., and Wiggins, S, An Analytical Study of Transport, Mixing and Chaos in an Unsteady Vortical Flow, J. Fluid Mech., 1990, vol. 214, pp. 347–394.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Wiggins, S, On the Geometry of Transport in Phase Space: 1. Transport in k-Degree-of-Freedom Hamiltonian Systems, 2 k < 8, Phys. D, 1990, vol. 44, no. 3, pp. 471–501.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gillilan, R. E. and Ezra, G. S, Transport and Turnstiles in Multidimensional Hamiltonian Mappings for Unimolecular Fragmentation: Application to van derWaals Predissociation, J. Chem. Phys., 1991, vol. 94, no. 4, pp. 2648–2668.CrossRefGoogle Scholar
  5. 5.
    Beigie, D, Multiple Separatrix Crossing in Multi-Degree-of-Freedom Hamiltonian Flows, J. Nonlinear Sci., 1995, vol. 5, no. 1, pp. 57–103.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Beigie, D., Codimension-One Partitioning and Phase Space Transport in Multi-Degree-of-Freedom Hamiltonian Systems with Non-Toroidal Invariant Manifold Intersections. Decidability and Predictability in the Theory of Dynamical Systems, Chaos Solitons Fractals, 1995, vol. 5, no. 2, pp. 177–211.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lekien, F., Shadden, Sh. C., and Marsden, J. E, Lagrangian Coherent Structures in n-Dimensional Systems, J. Math. Phys., 2007, vol. 48, no. 6, 065404, 19 pp.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Koon, W. S., Lo, M.W., Marsden, J. E., and Ross, Sh. D., Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics, Chaos, 2000, vol. 10, no. 2, pp. 427–469.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dellnitz, M., Junge, O., Koon, W.S., Lekien, F., Lo, M.W., Marsden, J.E., Padberg, K., Preis, R., Ross, Sh. D., and Thiere, B, Transport in Dynamical Astronomy and Multibody Problems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2005, vol. 15, no. 3, pp. 699–727.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zotos, E. E, Escape Dynamics and Fractal Basins Boundaries in the Three-Dimensional Earth–Moon System, Astrophys. Space Sci., 2016, vol. 361, no. 3, Art. 94, 23 pp.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zotos, E. E, Fractal Basin Boundaries and Escape Dynamics in a Multiwell Potential, Nonlinear Dynam., 2016, vol. 85, no. 3, pp. 1613–1633.MathSciNetCrossRefGoogle Scholar
  12. 12.
    McRobie, F. A. and Thompson, J. M. T, Lobe Dynamics and the Escape from a Potential Well, Proc. Roy. Soc. London Ser. A, 1991, vol. 435, no. 1895, pp. 659–672.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Martens, C. C., Davis, M. J., and Ezra, G. S, Local Frequency Analysis of Chaotic Motion in Multidimensional Systems: Energy Transport and Bottlenecks in Planar OCS, Chem. Phys. Lett., 1987, vol. 142, no. 6, pp. 519–528.CrossRefGoogle Scholar
  14. 14.
    Toda, M, Crisis in Chaotic Scattering of a Highly Excited van der Waals Complex, Phys. Rev. Lett., 1995, vol. 74, no. 14, pp. 2670–2673.CrossRefGoogle Scholar
  15. 15.
    Aref, H, Stirring by Chaotic Advection, J. Fluid Mech., 1984, vol. 143, pp. 1–21.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Aref, H. and Balachandar, S, Chaotic Advection in a Stokes Flow, Phys. Fluids, 1986, vol. 29, no. 11, pp. 3515–3521.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Duan, J. and Wiggins, S, Lagrangian Transport and Chaos in the Near Wake of the Flow around an Obstacle: A Numerical Implementation of Lobe Dynamics, Nonlinear Proc. Geophys., 1999, vol. 4, no. 3, pp. 125–136.CrossRefGoogle Scholar
  18. 18.
    Samelson, R.M. and Wiggins, S., Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach, Interdiscip. Appl. Math., vol. 31, New York: Springer, 2006.Google Scholar
  19. 19.
    Rom-Kedar, V. and Wiggins, S, Transport in Two-Dimensional Maps, Arch. Rational Mech. Anal., 1990, vol. 109, no. 3, pp. 239–298.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mackay, R. S., Meiss, J. D., and Percival, I.C, Transport in Hamiltonian Systems, Phys. D, 1984, vol. 13, nos. 1–2, pp. 55–81.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wiggins, S., Chaotic Transport in Dynamical Systems, Interdiscip. Appl. Math., vol. 2, New York: Springer, 1992.CrossRefGoogle Scholar
  22. 22.
    Rom-Kedar, V., Transport in a Class of n-D.o.F. Systems, in Hamiltonian Systems with Three or More Degrees of Freedom: Proc. of the NATO Advanced Study Institute (S’Agaró, 1995), C. Simó (Ed.), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 533, Dordrecht: Kluwer,1999, pp. 538–543.CrossRefGoogle Scholar
  23. 23.
    Sandstede, B., Balasuriya, S., Jones, Ch.K.R.T., and Miller, P, Melnikov Theory for Finite-Time Vector Fields, Nonlinearity, 2000, vol. 13, no. 4, pp. 1357–1377.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Balasuriya, S, Approach for Maximizing Chaotic Mixing in Microfluidic Devices, Phys. Fluids, 2005, vol. 17, no. 11, 118103, 4 pp.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Balasuriya, S., Cross-Separatrix Flux in Time-Aperiodic and Time-Impulsive Flows, Nonlinearity, 2006, vol. 19, no. 12, pp. 2775–2795.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Balasuriya, S., Froyland, G., and Santitissadeekorn, N, Absolute Flux Optimising Curves of Flows on a Surface, J. Math. Anal. Appl., 2014, vol. 409, no. 1, pp. 119–139.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Mitchell, K. A., Handley, J. P., Tighe, B., Delos, J.B., and Knudson, S.K, Geometry and Topology of Escape: 1. Epistrophes, Chaos, 2003, vol. 13, no. 3, pp. 880–891.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Mitchell, K. A., Handley, J.P., Delos, J. B., and Knudson, S.K, Geometry and Topology of Escape: 2. Homotopic Lobe Dynamics, Chaos, 2003, vol. 13, no. 3, pp. 892–902.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Mitchell, K. A. and Delos, J.B., A New Topological Technique for Characterizing Homoclinic Tangles, Phys. D, 2006, vol. 221, no. 2, pp. 170–187.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Shamos, M. I. and Hoey, D., Geometric Intersection Problems, in Proc. of the 17th Annual Symposium on Foundations of Computer Science (SFCS’76), Washington,D.C.: IEEE Computer Society,1976, pp. 208–215.CrossRefGoogle Scholar
  31. 31.
    O’Rourke, J., Computational Geometry in C, 2nd ed., Cambridge: Cambridge Univ. Press, 1998.CrossRefzbMATHGoogle Scholar
  32. 32.
    Koon, W. S., Marsden, J. E., Ross, Sh. D., Lo, M., and Scheeres, D. J, Geometric Mechanics and the Dynamics of Asteroid Pairs, Ann. N. Y. Acad. Sci., 2004, vol. 1017, pp. 11–38.CrossRefGoogle Scholar
  33. 33.
    Koon, W. S., Lo, M.W., Marsden, J. E., and Ross, Sh. D., Dynamical Systems, the Three-Body Problem and Space Mission Design, Marsden Books, 2011.Google Scholar
  34. 34.
    Naik, Sh. and Ross, Sh. D, Geometry of Escaping Dynamics in Nonlinear Ship Motion, Commun. Nonlinear Sci. Numer. Simul., 2017, vol. 47, pp. 48–70.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Mancho, A.M., Small, D., Wiggins, S., and Ide, K, Computation of Stable and Unstable Manifolds of Hyperbolic Trajectories in Two-Dimensional, Aperiodically Time-Dependent Vector Fields, Phys. D, 2003, vol. 182, nos. 3–4, pp. 188–222.zbMATHGoogle Scholar
  36. 36.
    Thompson, J.M.T. and De Souza, J. R, Suppression of Escape by Resonant Modal Interactions: In Shell Vibration and Heave-Roll Capsize, Proc. R. Soc. A, 1996, vol. 452, no. 1954, pp. 2527–2550.CrossRefzbMATHGoogle Scholar
  37. 37.
    Sepulveda, M.A. and Heller, E. J, Semiclassical Calculation and Analysis of Dynamical Systems with Mixed Phase Space, J. Chem. Phys., 1994, vol. 101, no. 9, pp. 8004–8015.CrossRefGoogle Scholar
  38. 38.
    Babyuk, D., Wyatt, R. E., and Frederick, J. H, Hydrodynamic Analysis of Dynamical Tunneling, J. Chem. Phys., 2003, vol. 119, no. 13, pp. 6482–6488.CrossRefGoogle Scholar
  39. 39.
    Barrio, R., Blesa, F., and Serrano, S, Bifurcations and Safe Regions in Open Hamiltonians, New J. Phys., 2009, vol. 11, no. 5, 053004, 15 pp.CrossRefGoogle Scholar
  40. 40.
    Jaffé, C., Ross, Sh. D., Lo, M. W., Marsden, J.E., Farrelly, D., and Uzer, T, Statistical Theory of Asteroid Escape Rates, Phys. Rev. Lett., 2002, vol. 89, no. 1, 011101, 4 pp.CrossRefGoogle Scholar
  41. 41.
    Jaffé, C., Farrelly, D., and Uzer, T, Transition State in Atomic Physics, Phys. Rev. A, 1999, vol. 60, no. 5, pp. 3833–3850.CrossRefGoogle Scholar
  42. 42.
    Dritschel, D. G, Contour Surgery: A Topological Reconnection Scheme for Extended Integrations Using Contour Dynamics, J. Comput. Phys., 1988, vol. 77, no. 1, pp. 240–266.MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Maelfeyt, B., Smith, S. A., and Mitchell, K. A, Using Invariant Manifolds to Construct Symbolic Dynamics for Three-Dimensional Volume-Preserving Maps, SIAM J. Appl. Dyn. Syst., 2017, vol. 16, no. 1, pp. 729–769.MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Shibabrat Naik
    • 1
  • Francois Lekien
    • 2
  • Shane D. Ross
    • 1
  1. 1.Department of Biomedical Engineering & Mechanics Virginia TechEngineering Mechanics ProgramBlacksburgUSA
  2. 2.École PolytechniqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations