Regular and Chaotic Dynamics

, Volume 22, Issue 1, pp 78–108 | Cite as

Arnold diffusion for a complete family of perturbations

  • Amadeu DelshamsEmail author
  • Rodrigo G. Schaefer
On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 2


In this work we illustrate the Arnold diffusion in a concrete example — the a priori unstable Hamiltonian system of 2 + 1/2 degrees of freedom H(p, q, I, φ, s) = p 2/2+ cos q − 1 + I 2/2 + h(q, φ, s; ε) — proving that for any small periodic perturbation of the form h(q, φ, s; ε) = ε cos q (a 00 + a 10 cosφ + a 01 cos s) (a 10 a 01 ≠ 0) there is global instability for the action. For the proof we apply a geometrical mechanism based on the so-called scattering map. This work has the following structure: In the first stage, for a more restricted case (I* ~ π/2μ, μ = a 10/a 01), we use only one scattering map, with a special property: the existence of simple paths of diffusion called highways. Later, in the general case we combine a scattering map with the inner map (inner dynamics) to prove the more general result (the existence of instability for any μ). The bifurcations of the scattering map are also studied as a function of μ. Finally, we give an estimate for the time of diffusion, and we show that this time is primarily the time spent under the scattering map.


Arnold diffusion normally hyperbolic invariant manifolds scattering maps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernard, P., Arnold’s Diffusion: From the a priori Unstable to the a priori Stable Case, in Proc. of the 26th Internat. Congress of Mathematicians (ICM 2010, Hyderabad, India): Vol. 3, New Delhi: Hindustan Book Agency, 2010, pp. 1680–1700.Google Scholar
  2. 2.
    Bernard, P., Kaloshin, V., and Zhang, K., Arnold Diffusion in Arbitrary Degrees of Freedom and Crumpled 3-Dimensional Normally Hyperbolic Invariant Cylinders, Acta Math., 2017 (to appear).Google Scholar
  3. 3.
    Berti, M., Biasco, L., and Bolle, Ph., Drift in Phase Space: A New Variational Mechanism with Optimal Diffusion Time, J. Math. Pures Appl. (9), 2003, vol. 82, no. 6, pp. 613–664.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bessi, U., Chierchia, L., and Valdinoci, E., Upper Bounds on Arnold Diffusion Times via Mather Theory, J. Math. Pures Appl. (9), 2001, vol. 80, no. 1, pp. 105–129.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bounemoura, A. and Marco, J.-P., Improved Exponential Stability for Near-Integrable Quasi-Convex Hamiltonians, Nonlinearity, 2011, vol. 24, no. 1, pp. 97–112.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cheng, Ch.-Q. and Yan, J., Arnold Diffusion in Hamiltonian Systems: A priori Unstable Case, J. Differential Geom., 2009, vol. 82, no. 2, pp. 229–277.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chierchia, L. and Gallavotti, G., Drift and Diffusion in Phase Space, Ann. Inst. H.Poincaré Phys. Théor., 1994, vol. 60, no. 1, 144 pp.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cresson, J., The Transfer Lemma for Graff Tori and Arnold Diffusion Time, Discrete Contin. Dynam. Systems, 2001, vol. 7, no. 4, pp. 787–800.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cresson, J., Symbolic Dynamics and Arnold Diffusion, J. Differential Equations, 2003, vol. 187, no. 2, pp. 269–292.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cresson, J. and Guillet, Ch., Periodic Orbits and Arnold Diffusion, Discrete Contin. Dyn. Syst., 2003, vol. 9, no. 2, pp. 451–470.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Delshams, A., de la Llave, R., and Seara, T. M., A Geometric Approach to the Existence of Orbits with Unbounded Energy in Generic Periodic Perturbations by a Potential of Generic Geodesic Flows of T2, Comm. Math. Phys., 2000, vol. 209, no. 2, pp. 353–392.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Delshams, A., de la Llave, R., and Seara, T. M., A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem: Heuristics and Rigorous Verification on a Model, Mem. Amer. Math. Soc., 2006, vol. 179, no. 844, 141 pp.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Delshams, A., de la Llave, R., and Seara, T.M., Geometric Properties of the ScatteringMap of a Normally Hyperbolic Invariant Manifold, Adv. Math., 2008, vol. 217, no. 3, pp. 1096–1153.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Delshams, A. and Huguet, G., Geography of Resonances and Arnold Diffusion in a priori Unstable Hamiltonian Systems, Nonlinearity, 2009, vol. 22, no. 8, pp. 1997–2077.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Delshams, A. and Huguet, G., A Geometric Mechanism of Diffusion: Rigorous Verification in a priori Unstable Hamiltonian Systems, J. Differential Equations, 2011, vol. 250, no. 5, pp. 2601–2623.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fontich, E. and Martín, P., Differentiable Invariant Manifolds for Partially Hyperbolic Tori and a Lambda Lemma, Nonlinearity, 2000, vol. 13, no. 5, pp. 1561–1593.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fontich, E. and Martín, P., Hamiltonian Systems with Orbits Covering Densely Submanifolds of Small Codimension, Nonlinear Anal., 2003, vol. 52, no. 1, pp. 315–327.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gidea, M., de la Llave, R., and Seara, T.M., A General Mechanism of Diffusion in Hamiltonian Systems: Qualitative Results, arXiv:1405.0866 (2014).Google Scholar
  19. 19.
    Kaloshin, V. and Levi, M., An Example of Arnold Diffusion for Near-Integrable Hamiltonians, Bull. Amer. Math. Soc. (N. S.), 2008, vol. 45, no. 3, pp. 409–427.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kaloshin, V. and Levi, M., Geometry of Arnold Diffusion, SIAM Rev., 2008, vol. 50, no. 4, pp. 702–720.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kaloshin, V. and Zhang, K., Arnold Diffusion for Smooth Convex Systems of Two and a Half Degrees of Freedom, Nonlinearity, 2015, vol. 28, no. 8, pp. 2699–2720.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Loshak, P., Canonical Perturbation Theory: An Approach Based on Joint Approximations, Russian Math. Surveys, 1992, vol. 47, no. 6, pp. 57–133; see also: Uspekhi Mat. Nauk, 1992, vol. 47, no. 6(288), pp. 59–140.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lochak, P. and Marco, J.-P., Diffusion Times and Stability Exponents for Nearly Integrable Analytic Systems, Cent. Eur. J. Math., 2005, vol. 3, no. 3, pp. 342–397.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Marco, J.-P., Transition le long des chaines de tores invariants pour les systèmes Hamiltoniens analytiques, Ann. Inst. H. Poincaré Phys. Théor., 1996, vol. 64, no. 2, pp. 205–252.MathSciNetGoogle Scholar
  25. 25.
    Mather, J.N., Arnold Diffusion by Variational Methods, in Essays in Mathematics and Its Applications, Heidelberg: Springer, 2012, pp. 271–285.Google Scholar
  26. 26.
    Nekhoroshev, N. N., An Exponential Estimate of the time of Stability of Nearly Integrable Hamiltonian Systems, Russian Math. Surveys, 1977, vol. 32, no. 6, pp. 1–65; see also: Uspekhi Mat. Nauk, 1977, vol. 32, no. 6(198), pp. 5–66, 287.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, 3rd ed., Texts Appl. Math., vol. 12, New York: Springer, 2002.CrossRefzbMATHGoogle Scholar
  28. 28.
    Treschev, D., Evolution of Slow Variables in a priori Unstable Hamiltonian Systems, Nonlinearity, 2004, vol. 17, no. 5, pp. 1803–1841.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Treschev, D., Arnold Diffusion Far from Strong Resonances in Multidimensional a priori Unstable Hamiltonian Systems, Nonlinearity, 2012, vol. 25, no. 9, pp. 2717–2757.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhang, K., Speed of Arnold Diffusion for Analytic Hamiltonian Systems, Invent. Math., 2011, vol. 186, no. 2, pp. 255–290.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department de MatemàtiquesUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations