Regular and Chaotic Dynamics

, Volume 22, Issue 1, pp 27–53 | Cite as

Degenerate billiards in celestial mechanics

On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 2


In an ordinary billiard trajectories of a Hamiltonian system are elastically reflected after a collision with a hypersurface (scatterer). If the scatterer is a submanifold of codimension more than one, we say that the billiard is degenerate. Degenerate billiards appear as limits of systems with singularities in celestial mechanics. We prove the existence of trajectories of such systems shadowing trajectories of the corresponding degenerate billiards. This research is motivated by the problem of second species solutions of Poincaré.


Hamiltonian system billiard celestial mechanics collision regularization shadowing action functional 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnol’d, V. I., Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math., vol. 60, New York: Springer, 1989.CrossRefMATHGoogle Scholar
  2. 2.
    Arnold, V. I., Kozlov, V.V., and Neishtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed., Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 2006.MATHGoogle Scholar
  3. 3.
    Aubry, S., MacKay, R. S., and Baesens, C., Equivalence of Uniform Hyperbolicity for Symplectic Twist Maps and Phonon Gap for Frenkel–Kontorova Models, Phys. D, 1992, vol. 56, nos. 2–3, pp. 123–134.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bolotin, S., Shadowing Chains of Collision Orbits, Discrete Contin. Dyn. Syst., 2006, vol. 14, no. 2, pp. 235–260.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bolotin, S., Symbolic Dynamics of Almost Collision Orbits and Skew Products of Symplectic Maps, Nonlinearity, 2006, vol. 19, no. 9, pp. 2041–2063.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bolotin, S., Second Species Periodic Orbits of the Elliptic 3 Body Problem, Celestial Mech. Dynam. Astronom., 2005, vol. 93, nos. 1–4, pp. 343–371.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bolotin, S., Degenerate Billiards, Proc. Steklov Inst. Math., 2016, vol. 295, pp. 45–62.CrossRefGoogle Scholar
  8. 8.
    Bolotin, S. V. and Mackay, R. S., Periodic and Chaotic Trajectories of the Second Species for the n-Centre Problem, Celestial Mech. Dynam. Astronom., 2000, vol. 77, no. 1, pp. 49–75.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bolotin, S. and Negrini, P., Global Regularization for the n-Center Problem on a Manifold, Discrete Contin. Dyn. Syst., 2002, vol. 8, no. 4, pp. 873–892.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bolotin, S. and Negrini, P., Variational Approach to Second Species Periodic Solutions of Poincaré of the Three-Body Problem, Discrete Contin. Dyn. Syst., 2013, vol. 33, no. 3, pp. 1009–1032.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bolotin, S. and Negrini, P., Shilnikov Lemma for a Nondegenerate Critical Manifold of a Hamiltonian System, Regul. Chaotic Dyn., 2013, vol. 18, no. 6, pp. 774–800.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bolotin, S. V. and Treschev, D. V., The Anti-Inintegrable Limit, Russian Math. Surveys, 2015, vol. 70, no. 6, pp. 975–1030; see also: Uspekhi Mat. Nauk, 2015, vol. 70, no. 6(426), pp. 3–62.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Burago, D., Ferleger, S., and Kononenko, A., Uniform Estimates on the Number of Collisions in Semi-Dispersing Billiards, Ann. of Math. (2), 1998, vol. 147, no. 3, pp. 695–708.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chen, Y.-Ch., On Topological Entropy of Billiard Tables with Small Inner Scatterers, Adv. Math., 2010, vol. 224, no. 2, pp. 432–460.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Delshams, A., de la Llave, R., and Seara, T.M., Geometric Properties of the ScatteringMap of a Normally Hyperbolic Invariant Manifold, Adv. Math., 2008, vol. 217, no. 3, pp. 1096–1153.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Xue, J. and Dolgopyat, D., Non-Collision Singularities in the Planar Two-Center-Two-Body Problem, Comm. Math. Phys., 2016, vol. 345, no. 3, pp. 797–879.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Féjoz, J., Montgomery, R., and Knauf, A., Lagrangian Relations and Linear Billiards, arXiv:1606.01420 (2016).Google Scholar
  18. 18.
    Font, J., Nunes, A., and Simó, C., Consecutive Quasi-Collisions in the Planar Circular RTBP, Nonlinearity, 2002, vol. 15, no. 1, pp. 115–142.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gómez, G. and Ollé, M., Second-Species Solutions in the Circular and Elliptic Restricted Three-Body Problem: 1. Existence and Asymptotic Approximation, Celestial Mech. Dynam. Astronom., 1991, vol. 52, no. 2, pp. 107–146MathSciNetCrossRefMATHGoogle Scholar
  20. 19a.
    Gómez, G. and Ollé, M., Second-Species Solutions in the Circular and Elliptic Restricted Three-Body Problem: 2. Numerical explorations, Celestial Mech. Dynam. Astronom., 1991, vol. 52, no. 2, pp. 147–166.MathSciNetCrossRefMATHGoogle Scholar
  21. 20.
    Henrard, J., On Poincaré’s Second Species Solutions, Celestial Mech., 1980, vol. 21, no. 1, pp. 83–97.MathSciNetCrossRefMATHGoogle Scholar
  22. 21.
    Klein, M. and Knauf, A., Classical Planar Scattering by Coulombic Potentials, Lect. Notes Phys. Monogr., vol. 13, Berlin: Springer, 1992.MATHGoogle Scholar
  23. 22.
    Kozlov, V. and Treshchev, D., Billiards: A Genetic Introduction in the Dynamics of Systems with Impacts, Transl. of Math. Monograph. AMS, vol. 89, Providence, RI: AMS, 1991.MATHGoogle Scholar
  24. 23.
    Kustaanheimo, P. and Stiefel, E., Perturbation Theory of Kepler Motion Based on Spinor Regularization, J. Reine Angew. Math., 1965, vol. 218, pp. 204–219.MathSciNetMATHGoogle Scholar
  25. 24.
    Marco, J.-P. and Niederman, L., Sur la construction des solutions de seconde espèce dans le problème plan restrient des trois corps, Ann. Inst. H. Poincaré Phys. Théor., 1995, vol. 62, no. 3, pp. 211–249.MathSciNetGoogle Scholar
  26. 25.
    Perko, L. M., Second Species Solutions with an O(µv), 0 < v < 1, near-Moon Passage, Celestial Mech., 1981, vol. 24, no. 2, pp. 155–171.MathSciNetCrossRefMATHGoogle Scholar
  27. 26.
    Poincaré, H., Les méthodes nouvelles de la mécanique céleste: Vol. 3, Paris: Gauthiers-Villars, 1899.MATHGoogle Scholar
  28. 27.
    Shilnikov, L.P., On a Poincare–Birkhoff Problem, Math. USSR-Sb., 1967, vol. 3, no. 3, pp. 353–371; see also: Mat. Sb. (N. S.), 1967, vol. 74(116), no. 3, pp. 378–397.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.University of Wisconsin-MadisonMadisonUSA
  2. 2.V.A. Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations