Regular and Chaotic Dynamics

, Volume 21, Issue 7–8, pp 918–926 | Cite as

Experimental investigations of the controlled motion of a screwless underwater robot

  • Yury L. Karavaev
  • Alexander A. Kilin
  • Anton V. Klekovkin
Nonlinear Dynamics & Mobile Robotics

Abstract

In this paper we describe the results of experimental investigations of the motion of a screwless underwater robot controlled by rotating internal rotors. We present the results of comparison of the trajectories obtained with the results of numerical simulation using the model of an ideal fluid.

Keywords

screwless underwater robot experimental investigations helical body 

MSC2010 numbers

70-05 70Q05 76-05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vetchanin, E. V. and Kilin, A.A., Controllable Motion of a Rigid Body with Internal Mechanisms in an Ideal Incompressible Fluid, Proc. Steklov Inst. Math., 2016, vol. 295 (in press).Google Scholar
  2. 2.
    Koiller, J., Ehlers, K., and Montgomery, R., Problems and Progress in Microswimming, J. Nonlinear Sci., 1996, vol. 6, no. 6, pp. 507–541.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Vetchanin, E. V., Kilin, A.A., and Mamaev, I. S., Control of the Motion of a Helical Body in a Fluid Using Rotors, Regul. Chaotic Dyn., 2016, vol. 21, no. 7–8, pp. 874–884.CrossRefGoogle Scholar
  4. 4.
    Borisov, A. V., Vetchanin, E.V., and Kilin, A.A., The Control of the Motion of a Three-Axial Ellipsoid through a Fluid by Means of Rotors, Math. Notes, 2017 (in press).Google Scholar
  5. 5.
    Yu, J., Tan, M., Wang, Sh., and Chen, E., Development of a Biomimetic Robotic Fish and Its Control Algorithm, IEEE Trans. on Systems, Man, and Cybernetics: Part B (Cybernetics), 2004, vol. 34, no. 4, pp. 1798–1810.CrossRefGoogle Scholar
  6. 6.
    Villanueva, A., Smith, C., and Priya, S., A Biomimetic Robotic Jellyfish (Robojelly) Actuated by Shape Memory Alloy Composite Actuators, Bioinspir. Biomim., 2011, vol. 6, no. 3, 036004.CrossRefGoogle Scholar
  7. 7.
    Vetchanin, E. V., Mamaev, I. S., and Tenenev, V. A., The Self-Propulsion of a Body with Moving Internal Masses in a Viscous Fluid, Regul. Chaotic Dyn., 2013, vol. 18, no. 1, pp. 100–117.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ramodanov, S. M., Tenenev, V.A., and Treschev, D. V., Self-Propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 547–558.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Vankerschaver, J., Kanso, E., and Marsden, J.E., The Dynamics of a Rigid Body in Potential Flow with Circulation, Regul. Chaotic Dyn., 2010, vol. 15, no. 4–5, pp. 606–629.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Borisov, A.V. and Mamaev, I. S., On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation, Chaos, 2006, vol. 16, no. 1, 013118, 7 pp.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kozlov, V.V. and Ramodanov, S. M., The Motion of a Variable Body in an Ideal Fluid, J. Appl. Math. Mech., 2001, vol. 65, no. 4, pp. 579–587; see also: Prikl. Mat. Mekh., 2001, vol. 65, no. 4, pp. 592–601.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kozlov, V.V. and Ramodanov, S. M., On the Motion of a Body with a Rigid Hull and Changing Geometry of Masses in an Ideal Fluid, Dokl. Phys., 2002, vol. 47, no. 2, pp. 132–135; see also: Dokl. Akad. Nauk, 2002, vol. 382, no. 4, pp. 478–481.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kozlov, V.V. and Onishchenko, D. A., The Motion in a Perfect Fluid of a Body Containing a Moving Point Mass, J. Appl. Math. Mech., 2003, vol. 67, no. 4, pp. 553–564; see also: Prikl. Mat. Mekh., 2003, vol. 67, no. 4, pp. 620–633.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How to Control Chaplygin’s Sphere Using Rotors, Regul. Chaotic Dyn., 2012, vol. 17, no. 3–4, pp. 258–272.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How to Control Chaplygin’s Sphere Using Rotors: 2, Regul. Chaotic Dyn., 2013, vol. 18, no. 1–2, pp. 144–158.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kilin, A.A. and Klenov, A. I., Influence of Vortex Structures on the ControlledMotion of an Above-water Screwless Robot, Regul. Chaotic Dyn., 2016, vol. 21, no. 7–8, pp. 927–938.Google Scholar
  17. 17.
    Kirchhoff, G., Vorlesungen über mathematische Physik: Vol. 1. Mechanik, Leipzig: Teubner, 1876.MATHGoogle Scholar
  18. 18.
    Vetchanin, E. V., Karavaev, Yu. L., Kalinkin, A. A., Klekovkin, A. V., and Pivovarova, E.N., A Model of a Screwless Underwater Robot, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2015, vol. 25, no. 4, pp. 544–553.CrossRefGoogle Scholar
  19. 19.
    Quillen, A. C., Askari, H., Kelley, D. H., Friedmann, T., and Oakes, P. W., A Coin Vibrational Motor Swimming at Low Reynolds Number, Regul. Chaotic Dyn, 2016, vol. 21, no. 7–8, pp. 902–917.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Yury L. Karavaev
    • 1
  • Alexander A. Kilin
    • 2
  • Anton V. Klekovkin
    • 1
  1. 1.Izhevsk State Technical UniversityIzhevskRussia
  2. 2.Udmurt State UniversityIzhevskRussia

Personalised recommendations