Regular and Chaotic Dynamics

, Volume 21, Issue 7–8, pp 902–917 | Cite as

A coin vibrational motor swimming at low Reynolds number

  • Alice C. Quillen
  • Hesam Askari
  • Douglas H. Kelley
  • Tamar Friedmann
  • Patrick W. Oakes
Nonlinear Dynamics & Mobile Robotics

Abstract

Low-cost coin vibrational motors, used in haptic feedback, exhibit rotational internal motion inside a rigid case. Because the motor case motion exhibits rotational symmetry, when placed into a fluid such as glycerin, the motor does not swim even though its oscillatory motions induce steady streaming in the fluid. However, a piece of rubber foam stuck to the curved case and giving the motor neutral buoyancy also breaks the rotational symmetry allowing it to swim. We measured a 1 cm diameter coin vibrational motor swimming in glycerin at a speed of a body length in 3 seconds or at 3 mm/s. The swim speed puts the vibrational motor in a low Reynolds number regime similar to bacterial motility, but because of the oscillations of the motor it is not analogous to biological organisms. Rather the swimming vibrational motor may inspire small inexpensive robotic swimmers that are robust as they contain no external moving parts. A time dependent Stokes equation planar sheet model suggests that the swim speed depends on a steady streaming velocity V stream ~ Re s 1/2 U 0 where U 0 is the velocity of surface oscillations, and streaming Reynolds number Re s = U 0 2 /(ων) for motor angular frequency ω and fluid kinematic viscosity ν.

Keywords

swimming models hydrodynamics nonstationary 3-D Stokes equation bio-inspired micro-swimming devices 

MSC2010 numbers

76D07 76D99 76Z99 74F99 74L99 74H99 70B15 68T40 35Q99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allan, D., Caswell, T., Keim, N., and van der Wel, C., trackpy: Trackpy v0.3.1 [Data set]. Zenodo. http://doi.org/10.5281/zenodo.55143 (2016).Google Scholar
  2. 2.
    Alexander, R., Principles of Animal Locomotion, Princeton,N.J.: Princeton Univ. Press, 2003.CrossRefGoogle Scholar
  3. 3.
    Bertelsen, A. F., An Experimental Investigation of High Reynolds Number Steady Streaming Generated by Oscillating Cylinders, J. Fluid Mech., 1974, vol. 64, no. 3, pp. 589–598.CrossRefGoogle Scholar
  4. 4.
    Brennen, C., An Oscillating-Boundary-Layer Theory for Ciliary Propulsion, J. Fluid Mech., 1974, vol. 65, no. 4, pp. 799–824.CrossRefMATHGoogle Scholar
  5. 5.
    Brennen, C. and Winet, H., Fluid Mechanics of Propulsion by Cilia and Flagella, Annu. Rev. Fluid Mech., 1977, no. 9, pp. 9–339.CrossRefMATHGoogle Scholar
  6. 6.
    Childress, S., Spagnolie, S.E., and Tokieda, T., A Bug on a Raft: Recoil Locomotion in a Viscous Fluid, J. Fluid Mech., 2011, no. 669, pp. 669–527.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Crocker, J. C. and Grier, D.G., Methods of Digital Video Microscopy for Colloidal Studies, J. Colloid Interface Sci., 1996, vol. 179, no. 1, pp. 298–310.CrossRefGoogle Scholar
  8. 8.
    Delgado, J. and González-García, J. S., Evaluation of Spherical Shapes Swimming Efficiency at Low Reynolds Number with Applications to Some Biological Problems, Phys. D, 2002, vol. 168/169, pp. 365–378.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ehlers, K.M. and Koiller, J., Micro-Swimming without Flagella: Propulsion by Internal Structures, Regul. Chaotic Dyn., 2011, vol. 16, no. 6, pp. 1–30.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ehlers, K.M., Samuel, A.D., Berg, H.C., and Montgomery, R., Do Cyanobacteria Swim Using Traveling Surface Waves?, Proc. Natl. Acad. Sci. USA, 1996, no. 93, pp. 93–8340.CrossRefGoogle Scholar
  11. 11.
    Elgeti, J., Winkler, R.G., and Gompper, G., Physics of Microswimmers — Single Particle Motion and Collective Behavior: A Review, Rep. Progr. Phys., 2015, vol. 78, no. 5, 056601, 50 pp.MathSciNetCrossRefGoogle Scholar
  12. 12.
    González-García, J. and Delgado, J., Comparison of Efficiency of Translation between a Deformable Swimmer versus a Rigid Body in a Bounded Fluid Domain: Consequences for Subcellular Transport, J. Biol. Phys., 2006, vol. 32, no. 2, pp. 97–115.CrossRefGoogle Scholar
  13. 13.
    Gray, J. and Hancock, G. J., The Propulsion of Sea-Urchin Spermatozoa, J. Exp. Biol., 1955, no. 32, pp. 32–802.Google Scholar
  14. 14.
    Harman, M., Vig, D. K., Radolf, J.D., and Wolgemuth, C.W., Viscous Dynamics of Lyme Disease and Syphilis Spirochetes Reveal Flagellar Torque and Drag, Biophys. J., 2013, vol. 105, no. 10, pp. 2273–2280.CrossRefGoogle Scholar
  15. 15.
    Hogg, T., Using Surface-Motions for Locomotion of Microscopic Robots in Viscous Fluids, J. Micro-Bio Robotics, 2014, vol. 9, no. 3–4, pp. 61–77.CrossRefGoogle Scholar
  16. 16.
    Hosoi, A. E. and Goldman, D. I., Beneath Our Feet: Strategies for Locomotion in Granular Media, Annu. Rev. Fluid Mech., 2015, no. 47, pp. 47–431.CrossRefGoogle Scholar
  17. 17.
    Honji, H., Streaked Flow around an Oscillating Circular Cylinder, J. Fluid Mech., 1981, no. 107, pp. 107–509.CrossRefGoogle Scholar
  18. 18.
    Khapalov, A.Y., Micromotions of a Swimmer in the 3-D Incompressible Fluid Governed by the Nonstationary Stokes Equation, SIAM J. Math. Anal., 2013, vol. 45, no. 6, pp. 3360–3381.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kim, S. and Karrila, S. J., Microhydrodynamics: Principles and Selected Applications, Boston,Mass.: Butterworth/Heinemann, 1991.Google Scholar
  20. 20.
    Klotsa, D., Baldwin, K. A., Hill, R. J. A., Bowley, R. M., and Swift, M. R., Propulsion of a Two-Sphere Swimmer, Phys. Rev. Let., 2015, vol. 115, no. 24, 248102, 5 pp.CrossRefGoogle Scholar
  21. 21.
    Kotas, Ch.W., Yoda, M., and Rogers, P. H., Visualization of Steady Streaming Near Oscillating Spheroids, Exp. Fluids, 2007, vol. 42, no. 1, pp. 111–121.CrossRefGoogle Scholar
  22. 22.
    Lauga, E., Life around the Scallop Theorem, Soft Matter, 2011, no. 7, pp. 7–3060.CrossRefGoogle Scholar
  23. 23.
    Lauga, E. and Powers, Th.R., The Hydrodynamics of Swimming Microorganisms, Rep. Prog. Phys., 2009, vol. 72, no. 9, 096601, 58 pp.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lauga, E., Bacterial Hydrodynamics, Annu. Rev. Fluid Mech., 2016, no. 48, pp. 48–105.CrossRefMATHGoogle Scholar
  25. 25.
    Lighthill, M. J., On the Squirming Motion of Nearly Spherical Deformable Bodies through Liquids at Very Small Reynolds Numbers, Commun. Pure Appl. Math., 1952, no. 5, pp. 5–109.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Lighthill, J., Acoustic Streaming, J. Sound Vibration, 1978, vol. 61, no. 3, pp. 391–418.CrossRefMATHGoogle Scholar
  27. 27.
    Longuet-Higgins, M. S., Viscous Streaming from an Oscillating Spherical Bubble, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 1998, vol. 454, no. 1970, pp. 725–742.Google Scholar
  28. 28.
    Nadal, F. and Lauga, E., Asymmetric Steady Streaming As aMechanism for Acoustic Propulsion of Rigid Bodies, Phys. Fluids, 2014, vol. 26, no. 8, 082001, 26 pp.CrossRefGoogle Scholar
  29. 29.
    Noselli, G. and DeSimone, A., A Robotic Crawler Exploiting Directional Frictional Interactions: Experiments, Numerics, and Derivation of a Reduced Model, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 2014, vol. 470, no. 2171, 20140333, 15 pp.CrossRefGoogle Scholar
  30. 30.
    Nyborg, W. L., Acoustic Streaming near a Boundary, J. Acoust. Soc. Am., 1958, vol. 30, no. 4, pp. 329–339.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pedley, T. J., Brumley, D. R., and Goldstein, R.E., Squirmers with Swirl: A Model for Volvox Swimming, J. Fluid Mech., 2016, no. 798, pp. 798–165.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Pozrikidis, C., Introduction to Theoretical and Computational Fluid Dynamics, 2nd ed., New York: Oxford Univ. Press, 2011.MATHGoogle Scholar
  33. 33.
    Purcell, E. M., Life at Low Reynolds Number, Am. J. Phys., 1977, vol. 45, no. 1, pp. 3–11.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Qiu, T., Lee, T.-C., Mark, A.G., Morozov, K. I., Münster, R., Mierka, O., Turek, S., Leshansky, A. M., and Fischer, P., Swimming by Reciprocal Motion at Low Reynolds Number, Nat. Commun., 2014, vol. 5, 5119, 38 pp.CrossRefGoogle Scholar
  35. 35.
    Riley, N., Steady Streaming, Annu. Rev. Fluid Mech., 2001, no. 33, pp. 33–43.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Saffman, P. G., The Self-Propulsion of a Deformable Body in a Perfect Fluid, J. Fluid Mech., 1967, vol. 28, no. 2, pp. 385–389.CrossRefMATHGoogle Scholar
  37. 37.
    Sadiq, M. A., Steady Flow Produced by the Vibration of a Sphere in an Infinite Viscous Incompressible Fluid, J. Phys. Soc. Jpn., 2011, vol. 80, 094403, 6 pp.CrossRefGoogle Scholar
  38. 38.
    Schlichting, H., Berechnung ebner periodischer Grenzschichtströmungen, Phys. Z., 1932, no. 33, pp. 33–327.MATHGoogle Scholar
  39. 39.
    Segur, J. B. and Oberstar, H. E., Viscosity of Glycerol and Its Aqueous Solutions, Ind. Eng. Chem., 1951, vol. 43, no. 9, pp. 2117–2120.CrossRefGoogle Scholar
  40. 40.
    Shapere, A. and Wilczek, F., Geometry of Self-Propulsion at Low Reynolds Number, J. Fluid Mech., 1989, no. 198, pp. 198–557.MathSciNetMATHGoogle Scholar
  41. 41.
    Stone, H.A. and Samuel, A.D.T., Propulsion of Microorganisms by Surface Distortions, Phys. Rev. Lett., 1996, vol. 77, no. 19, pp. 4102–4104.CrossRefGoogle Scholar
  42. 42.
    Stuart, J.T., Double Boundary Layers in Oscillatory Viscous Flow, J. Fluid Mech., 1966, vol. 24, no. 4, pp. 673–687.MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Taylor, G. I., Analysis of the Swimming of Microscopic Organisms, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 1951, vol. 209, no. 1099, pp. 447–461.MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Vetchanin, E. V., Mamaev, I. S., and Tenenev, V. A., The Self-Propulsion of a Body with Moving Internal Masses in a Viscous Fluid, Regul. Chaotic Dyn., 2013, vol. 18, no. 1, pp. 100–117.MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Vetchanin, E. V. and Kilin, A.A., Control of Body Motion in an Ideal Fluid Using the Internal Mass and the Rotor in the Presence of Circulation around the Body, J. Dyn. Control Syst., 2017 (to appear).Google Scholar
  46. 46.
    Vladimirov, V.A., Dumbbell Micro-Robot Driven by Flow Oscillations, J. Fluid Mech., 2013, vol. 717, R8, 11 pp.CrossRefMATHGoogle Scholar
  47. 47.
    Wagner, G. L. and Lauga, E., Crawling Scallop: Friction-Based Locomotion with One Degree of Freedom, J. Theor. Biol., 2013, no. 324, pp. 324–42.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Alice C. Quillen
    • 1
  • Hesam Askari
    • 2
  • Douglas H. Kelley
    • 2
  • Tamar Friedmann
    • 1
    • 3
    • 4
  • Patrick W. Oakes
    • 1
  1. 1.Dept. of Physics and AstronomyUniversity of RochesterRochesterUSA
  2. 2.Dept. of Mechanical EngineeringUniversity of RochesterRochesterUSA
  3. 3.Dept. of MathematicsUniversity of RochesterRochesterUSA
  4. 4.Dept. of Mathematics and StatisticsSmith CollegeNorthamptonUSA

Personalised recommendations