Regular and Chaotic Dynamics

, Volume 21, Issue 5, pp 556–580 | Cite as

The spatial problem of 2 bodies on a sphere. Reduction and stochasticity

  • Alexey V. Borisov
  • Ivan S. Mamaev
  • Ivan A. Bizyaev


In this paper, we consider in detail the 2-body problem in spaces of constant positive curvature S 2 and S 3. We perform a reduction (analogous to that in rigid body dynamics) after which the problem reduces to analysis of a two-degree-of-freedom system. In the general case, in canonical variables the Hamiltonian does not correspond to any natural mechanical system. In addition, in the general case, the absence of an analytic additional integral follows from the constructed Poincaré section. We also give a review of the historical development of celestial mechanics in spaces of constant curvature and formulate open problems.


celestial mechanics space of constant curvature reduction rigid body dynamics Poincaré section 

MSC2010 numbers

70F15 01A85 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albouy, A., The Underlying Geometry of the Fixed Centers Problems, in Topological Methods, Variational Methods and Their Applications (Taiyuan, 2002), H. Brezis, K.C. Chang, S.J. Li, P. Rabinowitz (Eds.), River Edge, N.J.: World Sci., 2003, pp. 11–21.Google Scholar
  2. 2.
    Albouy, A., There is a Projective Dynamics, Eur. Math. Soc. Newsl., 2013, No. 89, pp. 37–43.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Albouy, A. and Stuchi, T.J., Generalising the Classical Fixed-Centres Problem in a Non-Hamiltonian Way, J. Phys, A, 2004, vol. 37, no. 39, pp. 9109–9123.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Altschuler, E.L., Williams, T.J., Ratner, E.R, Tipton, R., Stong, R., Dowla, F., and Wooten, F., Possible Global Minimum Lattice Configurations for Thomson’s Problem of Charges on a Sphere, Phys. Rev. Lett., 1997, vol. 78, no. 14, pp. 2681–2685.CrossRefGoogle Scholar
  5. 5.
    Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., and Vainchtein, D.L., Vortex Crystals, Adv. Appl. Mech., 2003, vol. 39, 1–79.CrossRefGoogle Scholar
  6. 6.
    Appell, P., Sur les lois de forces centrales faisant décrire à leur point d’application une conique quelles que soient les conditions initiales, Amer. J. Math., 1891, vol. 13, no. 2, pp. 153–158.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Appell, P., De l’homographie en mécanique, Amer. J. Math., 1890, vol. 12, no. 1, pp. 103–114.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Appell, P., Sur une transformation de mouvements, Amer.J. Math., 1895, vol. 17, no. 1, pp. 1–5.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ball, R.S., Certain Problems in the Dynamics of a Rigid System Moving in Elliptic Space, Trans. Roy. Irish Acad., 1881, vol. 28, 159–184.Google Scholar
  10. 10.
    Ballesteros A., Enciso A., Herranz F.J., Ragnisco O. Hamiltonian Systems Admitting a Runge–Lenz Vector and an Optimal Extension of Bertrand’s Theorem to Curved Manifolds, Comm. Math. Phys., 2009, vol. 290, no. 3, pp. 1033–1049.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Barut, A.O., Inomata, A., and Junker, G., Path Integral Treatment of the Hydrogen Atom in a Curved Space of Constant Curvature, J. Phys. A, 1987, vol. 20, no. 18, pp. 6271–6280.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bertrand, J., Théorème relatif au mouvement d’un point attiré vers un centre fixe, C.R. Acad. Sci. Paris, 1873, vol. 77, no. 16, pp. 849–853.zbMATHGoogle Scholar
  13. 13.
    Bizyaev, I.A., Borisov, A.V., and Mamaev, I.S., Figures of Equilibrium of an Inhomogeneous Self-Gravitating Fluid, Celestial Mech. Dynam. Astronom., 2015, vol. 122, no. 1, pp. 1–26.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bizyaev, I.A., Borisov, A.V., and Mamaev, I.S., Superintegrable Generalizations of the Kepler and Hook Problems, Regul. Chaotic Dyn., 2014, vol. 19, no. 3, pp. 415–434.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Boatto, S., Dritschel, D.G., and Schaefer, R.G., N-Body Dynamics on Closed Surfaces: The Axioms of Mechanics, Proc.R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2016, vol. 472, no. 2192, 20160020.CrossRefGoogle Scholar
  16. 16.
    Bogush, A.A., Gritsev, V.V., Kurochkin, Yu.A., and Otchik, V.S., An Algebraic Treatment of the MIC-Kepler Problem on S3 Sphere, Phys. Atomic Nuclei, 2002, vol. 65, no. 6, pp. 1052–1056.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bogomolov, V.A., Dynamics of the Vorticity on a Sphere, Fluid Dynam., 1977, vol. 12, no. 6, pp. 863–870; see also: Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 1977, no. 6, pp. 57–65.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Borisov, A.V., Kilin, A.A., and Mamaev, I.S., A New Integrable Problem of Motion of Point Vortices on the Sphere, in Proc. of the IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25–30 August, 2006), A.V. Borisov, V.V. Kozlov, I.S. Mamaev, and M.A. Sokolovisky (Eds.), Dordrecht: Springer, 2008, pp. 39–53; see also: Nelin. Dinam., 2007, vol. 3, no. 2, pp. 211–223 (Russian).Google Scholar
  19. 19.
    Borisov, A.V., Kilin, A.A., and Mamaev, I.S., Superintegrable System on a Sphere with the Integral of Higher Degree, Regul. Chaotic Dyn., 2009, vol. 14, no. 6, pp. 615–620.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Borisov, A.V., Kilin, A.A., and Mamaev, I.S., Multiparticle Systems: The Algebra of Integrals and Integrable Cases, Regul. Chaotic Dyn., 2009, vol. 14, no. 1, pp. 18–41.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Borisov, A.V. and Mamaev, I.S., Poisson Structures and Lie Algebras in Hamiltonian Mechanics, Izhevsk: R&C Dynamics, 1999 (Russian), Scholar
  22. 22.
    Classical Dynamics in Non-Eucledian Spaces, A.V. Borisov, I.S. Mamaev (Eds.), Izhevsk: Institute of Computer Science, 2004 (Russian).Google Scholar
  23. 23.
    Borisov, A.V. and Mamaev, I.S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).zbMATHGoogle Scholar
  24. 24.
    Borisov, A.V. and Mamaev, I.S., Generalized Problem of Two and Four Newtonian Centers, Celestial Mech. Dynam. Astronom., 2005, vol. 92, no. 4, pp. 371–380.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Borisov, A.V. and Mamaev, I.S., Superintegrable Systems on a Sphere, Regul. Chaotic Dyn., 2005, vol. 10, no. 3, pp. 257–266.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Borisov, A.V. and Mamaev, I.S., The Restricted Two-Body Problem in Constant Curvature Spaces, Celestial Mech. Dynam. Astronom., 2006, vol. 96, no. 1, pp. 1–17.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Borisov, A.V. and Mamaev, I.S., Relations between Integrable Systems in Plane and Curved Spaces, Celestial Mech. Dynam. Astronom., 2007, vol. 99, no. 4, pp. 253–260.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Borisov, A.V. and Mamaev, I.S., Symmetries and Reduction in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 553–604.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Borisov, A.V., Mamaev, I.S., and Kilin, A.A., Two-Body Problem on a Sphere: Reduction, Stochasticity, Periodic Orbits, Regul. Chaotic Dyn., 2004, vol. 9, no. 3, pp. 265–279.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Borisov, A.V. and Pavlov, A.E., Dynamics and Statics of Vortices on a Plane and a Sphere, Regul. Chaotic Dyn., 1998, vol. 3, no. 1, pp. 28–38.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Born, M., Vorlesungen über Atommechanik, Berlin: Springer, 1925.zbMATHCrossRefGoogle Scholar
  32. 32.
    Calogero, F., Solution of a Three-Body Problem in One Dimension, J. Math. Phys., 1969, vol. 10, no. 12, pp. 2191–2196.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Cariñena, J.F., Rañada, M.F., and Santander, M., Superintegrability on Curved Spaces, Orbits and Momentum Hodographs: Revisiting a Classical Result by Hamilton, J. Phys. A, 2007, vol. 40, no. 45, pp. 13645–13666.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Cariñena, J.F., Rañada, M.F., and Santander, M., The Kepler Problem and the Laplace–Runge–Lenz Vector on Spaces of Constant Curvature and Arbitrary Signature, Qual. Theory Dyn. Syst., 2008, vol. 7, no. 1, pp. 87–99.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Chernikov, N.A., The Relativistic Kepler Problem in the Lobachevsky Space, Acta Phys. Polon. B, 1993, vol. 24, no. 5, pp. 927–950.MathSciNetGoogle Scholar
  36. 36.
    Clifford, W.K., On the Free Motion under no Forces of a Rigid System in an n-Fold Homaloid, Proc. London Math. Soc., 1876, S1-7, no. 1, pp. 67–70.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Clifford, W.K., Motion of a Solid in Elliptic Space, in Mathematical Papers, R. Tucker (Ed.), London: Macmillan, 1882, pp. 378–384.Google Scholar
  38. 38.
    Chernikov, N.A., The Kepler Problem in the Lobachevsky Space and Its Solution, Acta Phys. Polon. B, 1992, vol. 23, no. 2, pp. 115–122.MathSciNetGoogle Scholar
  39. 39.
    Chernoivan, V.A. and Mamaev, I.S., The Restricted Two-Body Problem and the Kepler Problem in the Constant Curvature Spaces, Regul. Chaotic Dyn., 1999, vol. 4, no. 2, pp. 112–124.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Darboux G. étude d’une question relative au mouvement d’un point sur une surface de révolution, Bull. Soc. Math. France, 1877, vol. 5, 100–113.MathSciNetzbMATHGoogle Scholar
  41. 41.
    Darboux, G., Sur une question relative au mouvement d’un point sur une surface de révolution, in Th. Despeyrous’ Cours de mécanique (avec des notes par M.G. Darboux): Vol. 2, Paris: Hermann, 1886, pp. 467–482 (note 15).Google Scholar
  42. 42.
    Darboux, G., Sur un problème de mécanique, Arch. Néerlandaises Sci., 1901, vol. 6, 371–376.zbMATHGoogle Scholar
  43. 43.
    De Francesco, D., Sul moto di un corpo rigido in uno spazio di curvatura costante, Math. Ann., 1902, vol. 55, no. 4, pp. 573–584.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Diacu, F., Relative Equilibria of the Curved N-Body Problem, Paris: Atlantis, 2012.zbMATHCrossRefGoogle Scholar
  45. 45.
    Diacu, F., The Curved N-Body Problem: Risks and Rewards, Math. Intelligencer, 2013, vol. 35, no. 3, pp. 24–33.MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Diacu, F. and Holmes, Ph., Celestial Encounters: The Origins of Chaos and Stability, Princeton: Princeton Univ. Press, 1999.zbMATHGoogle Scholar
  47. 47.
    Diacu, F. and Kordlou, Sh., Rotopulsators of the curved N-Body Problem, J. Differential Equations, 2013, vol. 255, no. 9, pp. 2709–2750.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Diacu, F., Martínez, R., Pérez-Chavela, E., and Simó, C., On the Stability of Tetrahedral Relative Equilibria in the Positively Curved 4-Body Problem, Phys. D, 2013, vol. 256/257, pp. 21–35.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Diacu, F. and Senechal, M., Creative Writing in Mathematics and Science, (BIRS Workshop Reports, 2016, 8 pp.).Google Scholar
  50. 50.
    Dombrowski, P. and Zitterbarth, J., On the Planetary Motion in the 3-dim. Standard Spaces M3 κ of Constant Curvature κ ∈ R, Demonstratio Math., 1991, vol. 24, nos. 3–4, pp. 375–458.MathSciNetzbMATHGoogle Scholar
  51. 51.
    Fehér, L.Gy., Dynamical O(4) Symmetry in the Asymptotic Field of the Prasad–Sommerfield Monopole, J. Phys. A, 1986, vol. 19, no. 7, pp. 1259–1270.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Franco-Pérez, L., Gidea, M., Levi, M., and Pérez-Chavela, E., Stability Interchanges in a Curved Sitnikov Problem, Nonlinearity, 2016, vol. 29, no. 3, pp. 1056–1079.MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Garcia-Gutierrez, L. and Santander, M., Levi-Civita regularization and geodesic flows for the ‘curved’ Kepler problem, Preprint, arXiv:0707.3810v2 (2007), 19 pp.Google Scholar
  54. 54.
    García-Naranjo, L.C., Marrero, J.C., Pérez-Chavela, E., and Rodríguez-Olmos, M., Classification and Stability of Relative Equilibria for the Two-Body Problem in the Hyperbolic Space of Dimension 2, J. Differential Equations, 2016, vol. 260, no. 7, pp. 6375–6404.MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Gibbons, G.W. and Warnick, C.M., Hidden Symmetry of Hyperbolic Monopole Motion, J. Geom. Phys., 2007, vol. 57, no. 11, pp. 2286–2315.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Grosche, C., The Path Integral for the Kepler Problem on the Pseudosphere, Ann. Physics, 1990, vol. 204, no. 1, pp. 208–222.MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Grosche, C., On the Path Integral in Imaginary Lobachevsky Space, J. Phys. A, 1994, vol. 27, no. 10, pp. 3475–3489.MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Heath, R.S., On the Dynamics of a Rigid Body in Elliptic Space, Phil. Trans.R. Soc. Lond., 1884, vol. 175, 281–324.zbMATHCrossRefGoogle Scholar
  59. 59.
    Higgs, P.W., Dynamical Symmetries in a Spherical Geometry: 1, J. Phys. A, 1979, vol. 12, no. 3, pp. 309–323.MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Ikeda, M. and Katayama, N., On Generalization of Bertrand’s Theorem to Spaces of Constant Curvature, Tensor (N.S.), 1982, vol. 38, 37–40.MathSciNetzbMATHGoogle Scholar
  61. 61.
    Infeld, L. and Schild, A., A Note on the Kepler Problem in a Space of Constant Negtive Curvature, Phys. Rev., 1945, vol. 67, nos. 3–4, pp. 121–123.MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Jovanović, V., A Note on the Proof of Bertrand’s Theorem, Theor. Appl. Mech., 2015, vol. 42, no. 1, p. 27–33.CrossRefGoogle Scholar
  63. 63.
    Kalnins, E.G., Kress, J.M., and Miller, W. Jr. Families of Classical Subgroup Separable Superintegrable Systems, J. Phys. A, 2010, vol. 43, no. 9, 092001, 8 pp.MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Katayama, N., A Note on the Kepler Problem in a Space of Constant Curvature, Nuovo Cimento B (11), 1990, vol. 105, no. 1, pp. 113–119.MathSciNetCrossRefGoogle Scholar
  65. 65.
    Katayama, N., On Generalized Runge–Lenz Vector and Conserved Symmetric Tensor for Central-Potential Systems with a Monopole Field on Spaces of Constant Curvature, Nuovo Cimento B (11), 1993, vol. 108, no. 6, pp. 657–667.MathSciNetGoogle Scholar
  66. 66.
    Kilin, A.A., Libration Points in Spaces S 2 and L 2, Regul. Chaotic Dyn., 1999, vol. 4, no. 1, pp. 91–103.MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Killing, W., Die Rechnung in den nichteuklidischen Raumformen, J. Reine Angew. Math., 1880, vol. 1880, no. 89, pp. 265–287.MathSciNetGoogle Scholar
  68. 68.
    Killing, H.W., Die Mechanik in den nicht-euklidischen Raumformen, J. Reine Angew. Math., 1885, vol. 98, no. 1, pp. 1–48.MathSciNetzbMATHGoogle Scholar
  69. 69.
    Kozlov, V.V., Problemata nova, ad quorum solutionem mathematici invitantur, in Dynamical Systems in Classical Mechanics, V.V. Kozlov (Ed.), Amer. Math. Soc. Transl. Ser. 2, vol. 168, Providence, R.I.: AMS, 1995, pp. 239–254.Google Scholar
  70. 70.
    Kozlov, V.V., Dynamics in Spaces of Constant Curvature, Moscow Univ. Math. Bull., 1994, vol. 49, no. 2, pp. 21–28; see also: Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., 1994, no. 2, 28–35, 102.MathSciNetzbMATHGoogle Scholar
  71. 71.
    Kozlov, V.V., The Newton and Ivory Theorems of Attraction in Spaces of Constant Curvature, Moscow Univ. Math. Bull., 2000, vol. 55, no. 5, pp. 16–20; see also: Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., 2000, no. 5, pp. 43–47.MathSciNetzbMATHGoogle Scholar
  72. 72.
    Kozlov, V.V. and Fedorov, Yu.N., Integrable Systems on the Sphere with Elastic Interaction Potentials, Math. Notes, 1994, vol. 56, no. 3, pp. 927–930; see also: Mat. Zametki, 1994, vol. 56, no. 3, pp. 74–79.MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Kozlov, V.V. and Harin, A.O., Kepler’s Problem in Constant Curvature Spaces, Celestial Mech. Dynam. Astronom., 1992, vol. 54, no. 4, pp. 393–399.MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Kozlov, I.S., Problem of Four Fixed Centers with Applications to Celestial Mechanics, Astron. Zh., 1974, vol. 51, no. 1, pp. 191–198 (Russian).Google Scholar
  75. 75.
    Kurakin, L.G., On Nonlinear Stability of the Regular Vortex Systems on a Sphere, Chaos, 2004, vol. 14, no. 3, pp. 1–11.MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Kurochkin, Yu.A. and Otchik, V.S., Analogue of the Runge–Lenz Vector and Energy Spectrum in the Kepler Problem on a Three-Dimensional sphere, Dokl. Akad. Nauk BSSR, 1979, vol. 23, no. 2, pp. 987–990 (Russian).Google Scholar
  77. 77.
    Kurochkin, Yu.A., Otchik, V.S., Mardoyan, L.G., Petrosyan, D.R., and Pogosyan, G.S., Kepler Motion on Single-Sheet Hyperboloid, Preprint, arXiv:1603.08139 (2016).Google Scholar
  78. 78.
    Kurochkin, Yu.A., Otchik, V.S., Ovsiyuk, E.M., and Shoukavy, D.V., On Some Integrable Systems in the Extended Lobachevsky Space, Phys. Atomic Nuclei, 2011, vol. 74, no. 6, pp. 944–948.CrossRefGoogle Scholar
  79. 79.
    Liebmann, H., Die Kegelschnitte und die Planetenbewegung im nichteuklidischen Raum, Ber. Königl. Sächs. Ges. Wiss., Math. Phys. Kl., 1902, vol. 54, 393–423.Google Scholar
  80. 80.
    Liebmann, H., über die Zentralbewegung in der nichteuklidischen Geometrie, Ber. Königl. Sächs. Ges. Wiss., Math. Phys. Kl., 1903, vol. 55, 146–153.Google Scholar
  81. 81.
    Liebmann, H., Nichteuklidische Geometrie, Leipzig: Göschen, 1905.zbMATHGoogle Scholar
  82. 82.
    Lindner, J.F., Roseberry, M.I., Shai, D.E., Harmon, N.J., and Olaksen, K.D., Precession and Chaos in the Classical Two-Body Problem in a Spherical Universe, Internat.J. Bifur. Chaos Appl. Sci. Engrg., 2008, vol. 18, no. 2, pp. 455–464.MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Liouville, J., Sur quelques cas particuliers où les équations du mouvement d’un point matériel peuvent s’intégrer: 1, J. Math. Pures Appl. (1), 1846, vol. 11, 345–378.Google Scholar
  84. 84.
    Lipschitz, R., Extension of the Planet-Problem to a Space of n-Dimensions and Constant Integral Curvature, Quart. J. Pure Appl. Math., 1873, vol. 12, 349–370.zbMATHGoogle Scholar
  85. 85.
    Lobachevsky, N.I., Complete Collected Works: Vol. 2. New Foundations of Geometry with a Complete Theory of Parallels (1835–1838), V.F. Kagan (Ed.), Moscow–Leningrad: GITTL, 1949, pp. 158–159.Google Scholar
  86. 86.
    Maciejewski, A.J. and Przybylska, M., Non-Integrability of Restricted Two Body Problems in Constant Curvature Spaces, Regul. Chaotic Dyn., 2003, vol. 8, no. 4, pp. 413–430.MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Mamaev, I.S., Integrable Problems of Particle Motion in Spaces of Constant Curvature in a Magnetic Monopole Field and in the Field of Two Fixed Newtonian Centers, in The 9th International Workshop on Gravitational Energy and Gravitational Waves (8–12 Dec 1996, Dubna, Russian Federation), Dubna: Joint Inst. Nucl. Res., 1998, pp. 75–78.Google Scholar
  88. 88.
    Mamaev, I.S., Numerical and Analytical Methods in Dynamical Systems Analysis, PhD Thesis, Moscow: Moscow State Univ., 2000 (Russian).Google Scholar
  89. 89.
    Miller, W. Jr., Post, S., and Winternitz, P., Classical and Quantum Superintegrability with Applications, J. Phys. A, 2013, vol. 46, no. 42, 423001, 97 pp.MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Montanelli, H., Computing Hyperbolic Choreographies, Regul. Chaotic Dyn., 2016, vol. 21, no. 5, pp. 523–531.zbMATHCrossRefGoogle Scholar
  91. 91.
    Montanelli, H. and Gushterov, N.I., Computing Planar and Spherical Choreographies, SIAM J. Appl. Dyn. Syst., 2016, vol. 15, no. 1, pp. 235–256.MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Morales-Ruiz, J.J. and Ramis, J.-P., Integrability of Dynamical Systems through Differential Galois Theory: A Practical Guide, in Differential Algebra, Complex Analysis and Orthogonal Polynomials, Contemp. Math., vol. 509, Providence, R.I.: AMS, 2010, pp. 143–220.Google Scholar
  93. 93.
    Mordukhai-Boltovskoi, D.D., On Some Problems of Celestial Mechanics in Non-Euclidean Space, Akad. Nauk Ukr. SSR, 1932, no. 1, pp. 47–70 (Ukrainian).Google Scholar
  94. 94.
    Neumann, C., Ausdehnung der Kepler’schen Gesetze auf den Fall, dass die Bewegung auf einer Kugelfläche stattfindet, Ber. Königl. Sächs. Ges. Wiss., Math. Phys. Kl., 1886, vol. 38, 1–2.zbMATHGoogle Scholar
  95. 95.
    Onofri, E. and Pauri, M., Search for Periodic Hamiltonian Flows: A Generalized Bertrand’s Theorem, J. Math. Phys., 1978, vol. 19, no. 9, pp. 1850–1858.MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Otchik, V.S., Symmetry and Separation of Variables in the Two-Center Coulomb Problem in Three Dimensional Spaces of Constant Curvature, Dokl. Akad. Nauk BSSR, 1991, vol. 35, no. 5, pp. 420–424 (Russian).MathSciNetGoogle Scholar
  97. 97.
    Petrosyan, D. and Pogosyan, G., Classical Kepler–Coulomb Problem on SO(2, 2) Hyperboloid, Phys. Atomic Nuclei, 2013, vol. 76, no. 10, pp. 1273–1283.CrossRefGoogle Scholar
  98. 98.
    Rañada, M.F., Superintegrable Systems with a Position Dependent Mass: Kepler-Related and Oscillator-Related Systems, Phys. Lett. A, 2016, vol. 380, nos. 27–28, pp. 2204–2210.MathSciNetCrossRefGoogle Scholar
  99. 99.
    Santoprete, M., Gravitational and Harmonic Oscillator Potentials on Surfaces of Revolution, J. Math. Phys., 2008, vol. 49, no. 4, 042903, 16 pp.MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    Schering, E., Die Schwerkraft im Gaussischen Raume, Nachr. Königl. Ges. Wiss. Göttingen, 1870, vol. 15, 311–321.zbMATHGoogle Scholar
  101. 101.
    Schering, E., Die Schwerkraft in mehrfach ausgedehnten Gaussischen und Riemannschen Räumen, Nachr. Königl. Ges. Wiss. Göttingen, 1873, vol. 1873, 149–159.zbMATHGoogle Scholar
  102. 102.
    Schmidt, D., Central Configurations and Relative Equilibria for the N-Body Problem, in Classical and Celestial Mechanics (Recife, 1993/1999), Princeton, N.J.: Princeton Univ. Press, 2002, pp. 1–33.Google Scholar
  103. 103.
    Schrödinger, E., A Method of Determining Quantum-Mechanical Eigenvalues and Eigenfunctions, Proc. Roy. Irish Acad. Sect. A, 1940, vol. 46, 9–16.MathSciNetzbMATHGoogle Scholar
  104. 104.
    Serret, P., Théorie nouvelle géométrique et mécanique des lignes à double courbure, Paris: Mallet-Bachelier, 1860.Google Scholar
  105. 105.
    Shchepetilov, A.V., Nonintegrability of the Two-Body Problem in Constant Curvature Spaces, J. Phys. A, 2006, vol. 39, no. 20, pp. 5787–5806.MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Shchepetilov, A.V., Calculus and Mechanics on Two-Point Homogenous Riemannian Spaces, Lect. Notes Phys., vol. 707, Berlin: Springer, 2006.Google Scholar
  107. 107.
    Shchepetilov, A.V., Reduction of the Two-Body Problem with Central Interaction on Simply Connected Spaces of Constant Sectional Curvature, J. Phys. A, 1998, vol. 31, no. 29, pp. 6279–6291.MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Slawianowski, J.J., Quantized Bertrand Systems on SO(3, R) and SU(2), Bull. Acad. Pol. Sci. Ser. Sci. Phys. et Astron., 1980, vol. 28, no. 2, pp. 83–94.MathSciNetzbMATHGoogle Scholar
  109. 109.
    Shchepetilov, A.V., Two-Body Problem on Spaces of Constant Curvature: 1. Dependence of the Hamiltonian on the Symmetry Group and the Reduction of the Classical System, Theoret. and Math. Phys., 2000, vol. 124, no. 2, pp. 1068–1081; see also: Teoret. Mat. Fiz., 2000, vol. 124, no. 2, pp. 249–264.MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Szumiński, W., Maciejewski, A.J., and Przybylska, M., Note on Integrability of Certain Homogeneous Hamiltonian Systems, Phys. Lett. A, 2015, vol. 379, nos. 45–46, pp. 2970–2976.MathSciNetCrossRefGoogle Scholar
  111. 111.
    Tremblay, F., Turbiner, A.V., and Winternitz, P., Periodic Orbits for an Infinite Family of Classical Superintegrable Systems, J. Phys. A, 2010, vol. 43, no. 1, 015202, 14 pp.MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Urkunden zur Geschichte der nichteuklidischen Geometrie: Vol. 2. Wolfgang und Johann Bolyai geometrische Untersuchungen: P. 1, 2, P. Stäckel (Ed.), Leipzig: Teubner, 1913.Google Scholar
  113. 113.
    Velpry, C., Kepler’s Laws and Gravitation in Non-Euclidean (Classical) Mechanics, Acta Phys. Hung. New Ser. Heavy Ion Phys., 2000, vol. 11, nos. 1–2, pp. 131–145.Google Scholar
  114. 114.
    Voronec P.V. Transformation of the equations of motion by means of linear integrals of motion (with an application to the n-body problem), Kiev. Univ. Izv., 1907, vol. 47, nos. 1–2, 192 pp. (Russian).Google Scholar
  115. 115.
    Vozmischeva, T.G., The Lagrange and Two-Center Problems in the Lobachevsky Space, Celestial Mech. Dynam. Astronom., 2002, vol. 84, no. 1, pp. 65–85.MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Vozmischeva, T.G., Integrable Problems of Celestial Mechanics in Spaces of Constant Curvature, Astrophysics and Space Science Library, vol. 295, Dordrecht: Springer, 2003.Google Scholar
  117. 117.
    Vozmishcheva, T.G. and Oshemkov, A.A., Topological Analysis of the Two-Center Problem on a Two-Dimensional Sphere, Sb. Math., 2002, vol. 193, nos. 7–8, pp. 1103–1138; see also: Mat. Sb., 2002, vol. 193, no. 8, pp. 3–38.MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Weyl, H., Space, Time, Matter, London: Methuen, 1922.zbMATHGoogle Scholar
  119. 119.
    Zagryadskii, O.A., Kudryavtseva, E.A., and Fedoseev, D.A., A Generalization of Bertrand’s Theorem to Surfaces of Revolution, Sb. Math., 2012, vol. 203, nos. 7–8, pp. 1112–1150; see also: Mat. Sb., 2012, vol. 203, no. 8, pp. 39–78.MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Zhu, Sh., Eulerian Relative Equilibria of the Curved 3-Body Problems in S 2, Proc. Amer. Math. Soc., 2014, vol. 142, no. 8, pp. 2837–2848.MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    Ziglin, S.L., On Non-Integrability of the Restricted Two-Body Problem on a Sphere, Dokl. Ross. Akad. Nauk, 2001, vol. 379, no. 4, pp. 477–478 (Russian).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Alexey V. Borisov
    • 1
  • Ivan S. Mamaev
    • 1
  • Ivan A. Bizyaev
    • 1
  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations