Regular and Chaotic Dynamics

, Volume 21, Issue 3, pp 367–376 | Cite as

The dynamics of vortex sources in a deformation flow

  • Ivan A. Bizyaev
  • Alexey V. Borisov
  • Ivan S. Mamaev
Article

Abstract

This paper is concerned with the dynamics of vortex sources in a deformation flow. The case of two vortex sources is shown to be integrable by quadratures. In addition, the relative equilibria (of the reduced system) are examined in detail and it is shown that in this case the trajectory of vortex sources is an ellipse.

Keywords

integrability vortex sources reduction deformation flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bannikova, E.Yu., Kontorovich, V.M., and Reznik, G.M., Dynamics of a Vortex Pair in Radial Flow, JETP, 2007, vol. 105, no. 3, pp. 542–548.CrossRefGoogle Scholar
  2. 2.
    Bizyaev, I.A., Borisov, A.V., and Mamaev, I. S., The Dynamics of Three Vortex Sources, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 694–701.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bogomolov, V.A., Interaction of Vortices in Plane-Parallel Flow, Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana, 1981, vol. 17, no. 2, pp. 199–201 (Russian).Google Scholar
  4. 4.
    Bogomolov V.A. Motion of an ideal fluid of constant density in the presence of sinks, Fluid Dyn., 1976, vol. 11, no. 4, pp. 508–513.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Hamiltonization of Nonholonomic Systems in the Neighborhood of Invariant Manifolds, Regul. Chaotic Dyn., 2011, vol. 16, no. 5, pp. 443–464.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., The Problem of Drift and Recurrence for the Rolling Chaplygin Ball, Regul. Chaotic Dyn., 2013, vol. 18, no. 6, pp. 832–859.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., A New Integrable Problem of Motion of Point Vortices on the Sphere, in Proc. of the IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25–30 August, 2006), A.V. Borisov, V.V. Kozlov, I. S. Mamaev, and M.A. Sokolovisky (Eds.), Dordrecht: Springer, 2008, pp. 39–53.CrossRefGoogle Scholar
  8. 8.
    Borisov, A.V. and Mamaev, I. S., On the Problem of Motion Vortex Sources on a Plane, Regul. Chaotic Dyn., 2006, vol. 11, no. 4, pp. 455–466.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 277–328.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Borisov, A. V., Mamaev, I. S., and Ramodanov, S. M., Dynamics of Two Interacting Circular Cylinders in Perfect Fluid, Discrete Contin. Dyn. Syst., 2007, vol. 19, no. 2, pp. 235–253.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Borisov, A. V. and Pavlov, A.E., Dynamics and Statics of Vortices on a Plane and a Sphere, Regul. Chaotic Dyn., 1998, vol. 3, no. 1, pp. 28–38.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fridman, A.A. and Polubarinova, P.Ya., On Moving Singularities of a Flat Motion of an Incompressible Fluid, Geofiz. Sb., 1928, vol. 5, no. 2, pp. 9–23 (Russian).Google Scholar
  13. 13.
    Kida, S., Motion of an Elliptical Vortex in an Uniform Shear Flow, J. Phys. Soc. Japan, 1981, vol. 50, no. 10, pp. 3517–3520.CrossRefGoogle Scholar
  14. 14.
    Kochin, N.E., Kibel, I. A., and Roze, N. V., Theoretical Hydrodynamics, New York: Wiley, 1964.MATHGoogle Scholar
  15. 15.
    Koshel, K.V. and Ryzhov, E.A., Parametric Resonance with a Point-Vortex Pair in a Nonstationary Deformation Flow, Phys. Lett. A, 2012, vol. 376, no. 5, pp. 744–747.CrossRefMATHGoogle Scholar
  16. 16.
    Kozlov, V.V., Symmetries, Topology and Resonances in Hamiltonian Mechanics, Ergeb. Math. Grenzgeb. (3), vol. 31, Berlin: Springer, 1996.Google Scholar
  17. 17.
    Kozlov, V.V., The Euler–Jacobi–Lie Integrability Theorem, Regul. Chaotic Dyn., 2013, vol. 18, no. 4, pp. 329–343.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kulik, K.N., Tur, A. V., and Yanovsky, V.V., Interaction of Point and Dipole Vortices in an Incompressible Liquid, Theoret. and Math. Phys., 2010, vol. 162, no. 3, pp. 459–480.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Llewellyn Smith, S.G., How Do Singularities Move in Potential Flow?, Phys. D, 2011, vol. 240, no. 20, pp. 1644–1651.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Milne-Thomson, L.M., Theoretical Hydrodynamics, 4th ed. New York: Macmillan, 1960.MATHGoogle Scholar
  21. 21.
    Romanov, A. S., Dipole Approximation in Three-Vortex Dynamics, Theoret. and Math. Phys., 2007, vol. 150, no. 3, pp. 409–416.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Ryzhov, E.A. and Koshel, K.V., Parametric Instability of a Many Point-vortex System in a Multi-layer Flow Under Linear Deformation, Regul. Chaotic Dyn., 2016, vol. 21, no. 3, pp. 254–266.CrossRefGoogle Scholar
  23. 23.
    Ryzhov, E.A. and Koshel, K.V., Dynamics of a Vortex Pair Interacting with a Fixed Point Vortex, Europhys. Lett., 2013, vol. 102, no. 4, 44004, 6 pp.CrossRefGoogle Scholar
  24. 24.
    Ryzhov, E.A., Koshel, K.V., and Carton, X. J., Passive Scalar Advection in the Vicinity of Two Point Vortices in a Deformation Flow, Eur. J. Mech. B Fluids, 2012, vol. 34, pp. 121–130.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Stuart, J.T., On Finite Amplitude Oscillations in Laminar Mixing Layers, J. Fluid Mech., 1967, vol. 29, no. 3, pp. 417–440.CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Ivan A. Bizyaev
    • 1
  • Alexey V. Borisov
    • 1
  • Ivan S. Mamaev
    • 1
    • 2
  1. 1.Udmurt State UniversityIzhevskRussia
  2. 2.Institute of Mathematics and Mechanics of the Ural Branch of RASEkaterinburgRussia

Personalised recommendations