Advertisement

Regular and Chaotic Dynamics

, Volume 21, Issue 1, pp 24–65 | Cite as

Topological atlas of the Kowalevski–Sokolov top

  • Mikhail P. KharlamovEmail author
  • Pavel E. Ryabov
  • Alexander Yu. Savushkin
Article

Abstract

We investigate the phase topology of the integrable Hamiltonian system on e(3) found by V. V. Sokolov (2001) and generalizing the Kowalevski case. This generalization contains, along with a homogeneous potential force field, gyroscopic forces depending on the configurational variables. The relative equilibria are classified, their type is calculated and the character of stability is defined. The Smale diagrams of the case are found and the isoenergy manifolds of the reduced systems with two degrees of freedom are classified. The set of critical points of the momentum map is represented as a union of critical subsystems; each critical subsystem is a one-parameter family of almost Hamiltonian systems with one degree of freedom. For all critical points we explicitly calculate the characteristic values defining their type. We obtain the equations of the diagram of the momentum map and give a classification of isoenergy and isomomentum diagrams equipped with the description of regular integral manifolds and their bifurcations. We construct the Smale–Fomenko diagrams which, when considered in the enhanced space of the energy-momentum constants and the essential physical parameters, separate 25 different types of topological invariants called the Fomenko graphs. We find all marked loop molecules of rank 0 nondegenerate critical points and of rank 1 degenerate periodic trajectories. Analyzing the cross-sections of the isointegral equipped diagrams, we get a complete list of the Fomenko graphs. The marks on them producing the exact topological invariants of Fomenko–Zieschang can be found from previous investigations of two partial cases with some additions obtained from the loop molecules or by a straightforward calculation using the separation of variables.

Keywords

integrable Hamiltonian systems relative equilibria isoenergy surfaces critical subsystems bifurcation diagrams rough topological invariants 

MSC2010 numbers

70E05 70E17 37J35 34A05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sokolov, V. V., A Generalized Kowalewski Hamiltonian and New Integrable Cases on e(3) and so(4), in Kowalevski property, V. B. Kuznetsov (Ed.), CRM Proc. Lecture Notes, vol. 32, Providence, R.I.: AMS, 2002, pp. 304–315.Google Scholar
  2. 2.
    Yehia, H. M., New Integrable Cases in the Dynamics of Rigid Bodies, Mech. Res. Comm., 1986, vol. 13, no. 3, pp. 169–172.CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Sokolov, V. V., A New Integrable Case for the Kirchhoff Equation, Theoret. and Math. Phys., 2001, vol. 129, no. 1, pp. 1335–1340; see also: Teoret. Mat. Fiz., 2001, vol. 129, no. 1, pp. 31–37.CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Borisov, A. V., Mamaev, I. S., and Sokolov, V. V., A New Integrable Case on so(4), Dokl. Phys., 2001, vol. 46, no. 12, pp. 888–889; see also: Dokl. Ross. Akad. Nauk, 2001, vol. 381, no. 5, pp. 614–615.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Vershilov, A. V., Grigoryev, Yu.A., and Tsiganov, A.V., On an Integrable Deformation of the Kowalevski Top, Nelin. Dinam., 2014, vol. 10, no. 2, pp. 223–236 (Russian).Google Scholar
  6. 6.
    Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Topology and Stability of Integrable Systems, Russian Math. Surveys, 2010, vol. 65, no. 2, pp. 259–318; see also: Uspekhi Mat. Nauk, 2010, vol. 65, no. 2, pp. 71–132.CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Borisov, A. V. and Mamaev, I. S., Topological Analysis of an Integrable System Related to the Rolling of a Ball on a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 4, pp. 356–371.CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., The Bifurcation Analysis and the Conley Index in Mechanics, Regul. Chaotic Dyn., 2012, vol. 17, no. 5, pp. 457–478.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Bolsinov, A.V. and Fomenko, A. T., Integrable Hamiltonian Systems: Geometry, Topology, Classification, Boca Raton, Fla.: CRC, 2004.Google Scholar
  10. 10.
    Fomenko, A. T. and Tsishang, Kh., A Topological Invariant and a Criterion for the Equivalence of Integrable Hamiltonian Systems with Two Degrees of Freedom, Math. USSR-Izv., 1991, vol. 36, no. 3, pp. 567–596; see also: Izv. Akad. Nauk SSSR Ser. Mat., 1990, vol. 54, no. 3, pp. 546–575.CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Smale, S., Topology and Mechanics: 1, Invent. Math., 1970, vol. 10, no. 4, pp. 305–331.CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Komarov, I. V., Sokolov, V.V., and Tsiganov, A.V., Poisson Maps and Integrable Deformations of the Kowalevski Top, J. Phys. A, 2003, vol. 36, no. 29, pp. 8035–8048.CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Komarov, I. V., Kowalewski Basis for the Hydrogen Atom, Theoret. and Math. Phys., 1981, vol. 47, no. 1, pp. 320–324; see also: Teoret. Mat. Fiz., 1981, vol. 47, no. 1, pp. 67–72CrossRefMathSciNetGoogle Scholar
  14. 14.
    Komarov, I. V. and Kuznetsov, V.B., Kowalewski’s Top on the Lie Algebras o(4), e(3) and o(3, 1), J. Phys. A, 1990, vol. 23, no. 6, pp. 841–846.CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Jurdjevic, V., Integrable Hamiltonian Systems on Lie Groups: Kowalewski Type, Ann. of Math. (2), 1999, vol. 150, no. 2, pp. 605–644.CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Borisov, A. V., Mamaev, I. S., and Kholmskaya, A.G., Kovalevskaya Top and Generalizations of Integrable Systems, Regul. Chaotic Dyn., 2001, vol. 6, no. 1, pp. 1–16.CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Kötter, F., Sur le cas traité par M-me Kowalevski de rotation d’un corps solide pesant autour d’un point fixe, Acta Math., 1893, vol. 17, no. 1, pp. 209–263.CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kharlamov, M.P., Topological Analysis and Boolean Functions: 1. Methods and Application to Classical Systems, Nelin. Dinam., 2010, vol. 6, no. 4, pp. 796–805 (Russian).MathSciNetGoogle Scholar
  19. 19.
    Kozlov, I.K., The Topology of the Liouville Foliation for the Kovalevskaya Integrable Case on the Lie Algebra so(4), Sb. Math., 2014, vol. 205, no. 4, pp. 532–572; see also: Mat. Sb., 2014, vol. 205, no. 4, pp. 79–120.CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Ryabov, P.E., Phase Topology of One Irreducible Integrable Problem in the Dynamics of a Rigid Body, Theoret. and. Math. Phys., 2013, vol. 176, no. 2, pp. 1000–1015; see also: Teoret. Mat. Fiz., 2013, vol. 176, no. 2, pp. 205–221.CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Kharlamov, M.P., Extensions of the Appelrot Classes for the Generalized Gyrostat in a Double Force Field, Regul. Chaotic Dyn., 2014, vol. 19, no. 2, pp. 226–244.CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Sokolov, V. V. and Tsiganov, A.V., Lax Pairs for the Deformed Kowalevski and Goryachev–Chaplygin Tops, Theoret. and Math. Phys., 2002, vol. 131, no. 1, pp. 543–549; see also: Teoret. Mat. Fiz., 2002, vol. 131, no. 1, pp. 118–125.CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Kharlamov, M.P., Symmetry in Systems with Gyroscopic Forces, Mekh. Tverd. Tela, 1983, no. 15, pp. 87–93 (Russian).MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kharlamov, M.P. and Ryabov, P. E., Smale–Fomenko Diagrams and Rough Topological Invariants of the Kowalevski–Yehia Case, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 4, pp. 40–59 (Russian).Google Scholar
  25. 25.
    Jacob, A., Invariant Manifolds in the Motion of a Rigid Body about a Fixed Point, Rev. Roumaine Math. Pures Appl., 1971, vol. 16, no. 10, pp. 1497–1521.MathSciNetGoogle Scholar
  26. 26.
    Gashenenko, I.N., Integral Manifolds in the Problem of Motion of a Heavy Rigid Body, Mekh. Tverd. Tela, 2003, no. 33, pp. 20–32 (Russian).MathSciNetzbMATHGoogle Scholar
  27. 27.
    Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).Google Scholar
  28. 28.
    Clebsch, A., Über die Bewegung eines Körpers in einer Flüssigkeit, Math. Ann., 1870, vol. 3, no. 1, pp. 238–262.CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Oshemkov, A.A., Fomenko Invariants for theMain Integrable Cases of the Rigid Body Motion Equations, Adv. in Soviet Math., 1991, vol. 6, pp. 67–146; see also: Tr. Semin. Vektorn. Tenzorn. Anal., 1993, vol. 25, pp. 23–109.MathSciNetGoogle Scholar
  30. 30.
    Ryabov, P.E., Bifurcations of First Integrals in the Sokolov Case, Theoret. and. Math. Phys., 2003, vol. 134, no. 2, pp. 181–197; see also: Teoret. Mat. Fiz., 2003, vol. 134, no. 2, pp. 207–226.CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Malkin, I.G., Theory of Stability of Motion, Ann Arbor, Mich.: Univ. of Michigan Library, 1958; see also: Moscow: Nauka, 1952 (Russian).Google Scholar
  32. 32.
    Lerman, L.M. and Umanskii, Ya. L., Structure of the Poisson Action of R2 on a Four-Dimensional Symplectic Manifold: 1, Selecta Math. Sov., 1987, vol. 6, no. 4, pp. 365–396.MathSciNetzbMATHGoogle Scholar
  33. 33.
    Dragović, V. and Kukić, K., Systems of Kowalevski Type and Discriminantly Separable Polynomials, Regul. Chaotic Dyn., 2014, vol. 19, no. 2, pp. 162–184.CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Dragović, V. and Kukić, K., The Sokolov Case, Integrable Kirchhoff Elasticae, and Genus 2 Theta Functions via Discriminantly Separable Polynomials, Proc. Steklov Inst. Math., 2014, vol. 286, no. 1, pp. 224–239.CrossRefzbMATHGoogle Scholar
  35. 35.
    Appelrot, G.G., Non-Completely Symmetric Heavy Gyroscopes, in Motion of a Rigid Body about a Fixed Point: Collection of Papers in Memory of S. V. Kovalevskaya, Moscow: Akad. Nauk SSSR, 1940, pp. 61–156 (Russian).Google Scholar
  36. 36.
    Ipatov, A. F., The Motion of S.V. Kowalevskaya Gyroscope on the Boundary of the Ultra-Elliptical Region, Uch. Zap. Petrozavodsk. Univ., 1970, vol. 18, no. 2, pp. 6–93 (Russian).Google Scholar
  37. 37.
    Kharlamov, M.P., Bifurcation of Common Levels of First Integrals of the Kovalevskaya Problem, J. Appl. Math. Mech., 1983, vol. 47, no. 6, pp. 737–743; see also: Prikl. Mat. Mekh., 1983, vol. 47, no. 6, pp. 922–930.CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Kharlamov, M.P., Bifurcation Diagrams of the Kowalevski Top in two Constant Fields, Regul. Chaotic Dyn., 2005, vol. 10, no. 4, pp. 381–398.CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Kharlamov, M.P., Bifurcation Diagrams and Critical Subsystems of the Kowalevski Gyrostat in Two Constant Fields, Hiroshima Math. J., 2009, vol. 39, no. 3, pp. 327–350.MathSciNetzbMATHGoogle Scholar
  40. 40.
    Fomenko, A. T., Symplectic Geometry, 2nd ed., Adv. Stud. Contemp. Math., vol. 5, Boca Raton, Fla.: CRC Press, 1995.zbMATHGoogle Scholar
  41. 41.
    Bogoyavlenskii, O. I., Integrable Euler Equations on Lie Algebras Arising in Problems of Mathematical Physics, Math. USSR-Izv., 1985, vol. 25, no. 2, pp. 207–257; see also: Izv. Akad. Nauk SSSR Ser. Mat., 1984, vol. 48, no. 5, pp. 883–938.CrossRefGoogle Scholar
  42. 42.
    Kharlamov, P. V., Lectures on the Dynamics of a Rigid Body, Novosibirsk: NGU, 1965 (Russian).Google Scholar
  43. 43.
    Yehia, H. M., On Certain Integrable Motions of a Rigid Body Acted upon by Gravity and Magnetic Fields, Internat. J. Non-Linear Mech., 2001, vol. 36, no. 7, pp. 1173–1175.CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    Kharlamov, M.P., Generalized 4th Appelrot Class: The Region of Existence of Motion and Separation of Variables, Nelin. Dinam., 2006, vol. 2, no. 4, pp. 453–472 (Russian).MathSciNetGoogle Scholar
  45. 45.
    Kharlamov, M.P., Complete Topological Atlas of an Integrable System with Two or Three Degrees of Freedom, Pontryagin Readings XXIV: Book of Abstracts, Voronezh: VGU, 2013, pp. 210–211 (Russian).Google Scholar
  46. 46.
    Kharlamov, M.P., Topological Analysis of Classical Integrable Systems in the Dynamics of the Rigid Body, Soviet Math. Dokl., 1983, vol. 28, no. 3, pp. 802–805; see also: Dokl. Akad. Nauk SSSR, 1983, vol. 273, no. 6, pp. 1322–1325.zbMATHGoogle Scholar
  47. 47.
    Bolsinov, A.V., Richter, P. H., and Fomenko, A. T., The Method of Loop Molecules and the Topology of the Kovalevskaya Top, Sb. Math., 2000, vol. 191, no. 2, pp. 151–188; see also: Mat. Sb., 2000, vol. 191, no. 2, pp. 3–42.CrossRefMathSciNetGoogle Scholar
  48. 48.
    Kharlamov, M.P., Topological Analysis of Integrable Problems of Rigid Body Dynamics, Leningrad: Leningr. Gos. Univ., 1988 (Russian).Google Scholar
  49. 49.
    Kharlamov, M.P., Phase Topology of One Integrable Case of the Rigid Body Motion, Mekh. Tverd. Tela, 1979, no. 11, pp. 50–64 (Russian).MathSciNetzbMATHGoogle Scholar
  50. 50.
    Pogosian, T. I. and Kharlamov, M.P., Bifurcation Set and Integral Manifolds in the Problem Concerning the Motion of a Rigid Body in a Linear Force Field, J. Appl. Math. Mech., 1979, vol. 43, no. 3, pp. 452–462; see also: Prikl. Mat. Mekh., 1979, vol. 43, no. 3, pp. 419–428.CrossRefMathSciNetGoogle Scholar
  51. 51.
    Kharlamov, M.P. and Ryabov, P. E., Bifurcations of the First Integrals of the Kowalevski–Yehia Case, Regul. Chaotic Dyn., 1997, vol. 2, no. 2, pp. 25–40 (Russian).MathSciNetzbMATHGoogle Scholar
  52. 52.
    Kharlamov, M.P., Kharlamova, I. I., and Shvedov, E. G., Bifurcation Diagrams on Isoenergetic Levels of the Kowalevski–Yehia Gyrostat, Mekh. Tverd. Tela, 2010, no. 40, pp. 77–90 (Russian).MathSciNetGoogle Scholar
  53. 53.
    Kharlamova, I. I. and Ryabov, P.E., Electronic Atlas of Bifurcation Diagrams of the Kowalevski–Yehia Gyrostat, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 2, pp. 147–162 (Russian).Google Scholar
  54. 54.
    Kharlamov, M.P., Ryabov, P. E., Kharlamova, I. I., Savushkin, A.Yu., and Shvedov, E. G., Topological Atlas of the Kowalevski–Yehia Gyrostat: Analytical Results and Topological Analysis: Preprint, arXiv:1411.6248 (2014) (Russian).Google Scholar
  55. 55.
    Kharlamov, M.P., The Critical Set and the Bifurcation Diagram of the Problem of Motion of the Kowalevski Top in Double Field, Mekh. Tverd. Tela, 2004, no. 34, pp. 47–58 (Russian).MathSciNetGoogle Scholar
  56. 56.
    Richter, P. H., Dullin, H.R., and Wittek, A., Kovalevskaya Top: Film C1961, Publ. Wiss. Film., Sekt. Techn. Wiss./Naturwiss., 1997, no. 13, pp. 33–96.Google Scholar
  57. 57.
    Bolsinov, A.V. and Matveev, V. S., Integrable Hamiltonian Systems: Topological Structure of Saturated Neighborhoods of Nondegenerate Singular Points, in Tensor and Vector Analysis: Geometry, Mechanics and Physics, A. T. Fomenko, O. V. Manturov and V.V. Trofimov (Eds.), Amsterdam: Gordon and Breach, 1988, pp. 31–56.Google Scholar
  58. 58.
    Morozov, P. V., Topology of Liouville Foliations of Cases of Steklov and Sokolov Integrability of the Kirchhoff Equations, Sb. Math., 2004, vol. 195, nos. 3–4, pp. 369–412; see also: Mat. Sb., 2004, vol. 195, no. 3, pp. 69–114.CrossRefMathSciNetzbMATHGoogle Scholar
  59. 59.
    Topalov, P. I., Calculation of the Fine Fomenko–Zieschang Invariant for Basic Integrable Cases of the Motion of a Rigid Body, Sb. Math., 1996, vol. 187, no. 3, pp. 451–468; see also: Mat. Sb., 1996, vol. 187, no. 3, pp. 143–160.CrossRefMathSciNetzbMATHGoogle Scholar
  60. 60.
    Kharlamov, M.P., Phase Topology of One System with Separated Variables and Singularities of the Symplectic Structure, J. Geom. Phys., 2015, vol. 87, pp. 248–265.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Mikhail P. Kharlamov
    • 1
    Email author
  • Pavel E. Ryabov
    • 2
  • Alexander Yu. Savushkin
    • 1
  1. 1.Russian Academy of National Economy and Public AdministrationVolgogradRussia
  2. 2.Financial University under the Government of Russian FederationMoscowRussia

Personalised recommendations