Regular and Chaotic Dynamics

, Volume 20, Issue 6, pp 752–766

# On the Hadamard–Hamel problem and the dynamics of wheeled vehicles

• Alexey V. Borisov
• Alexander A. Kilin
• Ivan S. Mamaev
Article

## Abstract

In this paper, we develop the results obtained by J. Hadamard and G.Hamel concerning the possibility of substituting nonholonomic constraints into the Lagrangian of the system without changing the form of the equations of motion. We formulate the conditions for correctness of such a substitution for a particular case of nonholonomic systems in the simplest and universal form. These conditions are presented in terms of both generalized velocities and quasi-velocities. We also discuss the derivation and reduction of the equations of motion of an arbitrary wheeled vehicle. In particular, we prove the equivalence (up to additional quadratures) of problems of an arbitrary wheeled vehicle and an analogous vehicle whose wheels have been replaced with skates. As examples, we consider the problems of a one-wheeled vehicle and a wheeled vehicle with two rotating wheel pairs.

### Keywords

nonholonomic constraint wheeled vehicle reduction equations of motion

37J60 37N05

## Preview

Unable to display preview. Download preview PDF.

### References

1. 1.
Chaplygin, S. A., On a Ball’s Rolling on a Horizontal Plane, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 131–148; see also: Math. Sb., 1903, vol. 24, no. 1, pp. 139–168.
2. 2.
Zakalyukin, I.V., Dynamics of a Beam with Two Sleights via Systems of Implicit Differential Equations, Trudy MAI, 2011, no. 42, 25 pp.Google Scholar
3. 3.
Hadamard, J., Sur les mouvements de roulement, Mémoires de la Société des sciences physiques et naturelles de Bordeaux, 4e série, 1895, vol. 5, pp. 397–417.Google Scholar
4. 4.
Hamel, G., Die Lagrange-Eulerschen Gleichungen der Mechanik, Z. Math. u. Phys., 1904, vol. 50, pp. 1–57.
5. 5.
Borisov, A. V. and Mamaev, I. S., Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems, Regul. Chaotic Dyn., 2008, vol. 13, no. 5, pp. 443–490.
6. 6.
Borisov, A. V. and Mamaev, I. S., Symmetries and Reduction in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 553–604.
7. 7.
Jean, F., The Car with N Trailers: Characterization of the Singular Configurations, ESAIM Control Optim. Calc. Var., 1996, vol. 1, pp. 241–266.
8. 8.
Agrachev, A.A. and Sachkov, Yu.L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., vol. 87, Berlin: Springer, 2004.Google Scholar
9. 9.
Kozlov V. V. On the realization of constraints in dynamics, J. Appl. Math. Mech., 1992, vol. 56, no. 4, pp. 594–600; see also: Prikl. Mat. Mekh., 1992, vol. 56, no. 4, pp. 692–698.
10. 10.
Vierkandt, A., Über gleitende und rollende Bewegung, Monatsh. Math. Phys., 1892, vol. 3, no. 1, pp. 31–38, 97–116.
11. 11.
Appell, P., Les mouvements de roulement en dynamique, Évreux: Hérissey, 1899.
12. 12.
Bloch, A., Nonholonomic Mechanics and Control, New York: Springer, 2003.
13. 13.
Hamel, G., Theoretische Mechanik: Eine einheitliche Einführung in die gesamte Mechanik, 2nd ed., Berlin: Springer, 1978.
14. 14.
Ehlers, K.M. and Koiller, J., Rubber Rolling: Geometry and Dynamics of 2-3-5 Distributions, in Proc. IUTAM Symposium 2006 on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, Russia, 25–30 August 2006), pp. 469–480.Google Scholar
15. 15.
Stückler, B., Über die Differentialgleichungen für die Bewegung eines idealisierten Kraftwagens, Arch. Appl. Mech., 1952, vol. 20, no. 5, pp. 337–356.Google Scholar
16. 16.
Stückler, B., Über die Berechnung der an rollenden Fahrzeugen wirkenden Haftreibungen, Arch. Appl. Mech., 1955, vol. 23, no. 4, pp. 279–287.Google Scholar
17. 17.
Rocard, Y., L’instabilité en mécanique: Automobiles, avions, ponts suspendus, Paris: Masson, 1954.Google Scholar
18. 18.
Bottema, O., Die Bewegung eines einfachen Wagenmodells, Z. Angew. Math. Mech., 1964, vol. 44, no. 12, pp. 585–593.
19. 19.
Staicu, S., Dynamics Equations of a Mobile Robot Provided with Caster Wheel, Nonlinear Dynam., 2009, vol. 58, no. 1, pp. 237–248.
20. 20.
Giergiel, J. and Żylski, W., Description of Motion of a Mobile Robot by Maggie’s Equations, J. Theor. Appl. Mech., 2005, vol. 43, no. 3, pp. 511–521.Google Scholar
21. 21.
Bravo-Doddoli, A. and García-Naranjo, L.C., The Dynamics of an Articulated n-Trailer Vehicle, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 497–517.
22. 22.
Martynenko, Yu. G., The Theory of the Generalized Magnus Effect for Non-Holonomic Mechanical Systems, J. Appl. Math. Mech., 2004, vol. 68, no. 6, pp. 847–855; see also: Prikl. Mat. Mekh., 2004, vol. 68, no. 6, pp. 948–957.
23. 23.
Martynenko, Yu. G., Motion Control of Mobile Wheeled Robots, J. Math. Sci. (N. Y.), 2007, vol. 147, no. 2, pp. 6569–6606; see also: Fundam. Prikl. Mat., 2005, vol. 11, no. 8, pp. 29–80.
24. 24.
Campion, G., Bastin, G., and d’Andréa-Novel, B., Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots, IEEE Trans. Robot. Autom., 1996, vol. 12, no. 1, pp. 47–62.
25. 25.
Chaplygin, S. A., On the Theory of Motion of Nonholonomic Systems. The Reducing-Multiplier Theorem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 369–376; see also: Mat. Sb., 1912, vol. 28, no. 2, pp. 303–314.
26. 26.
Chaplygin, S. A., On a Ball’s Rolling on a Horizontal Plane, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 131–148; see also: Math. Sb., 1903, vol. 24, no. 1, pp. 139–168.
27. 27.
Krishnaprasad, P. S. and Tsakiris, D.P., Oscillations, SE(2)-Snakes and Motion Control: A Study of the Roller Racer, Dyn. Syst., 2001, vol. 16, no. 4, pp. 347–397.
28. 28.
Vershik, A. M. and Gershkovich, V.Ya., Nonholonomic Dynamical Systems, Geometry of Distributions and Variational Problems, in Dynamical Systems: VII. Integrable Systems Nonholonomic Dynamical Systems, V. I. Arnol’d, S.P. Novikov (Eds.), Encyclopaedia Math. Sci., vol. 16, Berlin: Springer, 1994, pp. 1–81.Google Scholar
29. 29.
Arnol’d, V. I., Kozlov, V.V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed., Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 2006.Google Scholar
30. 30.
Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Geometrisation of Chaplygin’s Reducing Multiplier Theorem, Nonlinearity, 2015, vol. 28, no. 7, pp. 2307–2318.
31. 31.
Borisov, A. V. and Mamaev, I. S., The Rolling Motion of a Rigid Body on a Plane and a Sphere: Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 177–200.
32. 32.
Borisov, A. V. and Mamaev, I. S., Symmetries and Reduction in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 553–604.
33. 33.
Borisov, A. V., Mamaev, I. S., Kilin, A.A., and Bizyaev, I.A., Qualitative Analysis of the Dynamics of a Wheeled Vehicle, Regul. Chaotic Dyn., 2015, vol. 20, no. 6, pp. 739–751.
34. 34.
Borisov, A. V., Kilin, A.A., and Mamaev, I. S., The Problem of Drift and Recurrence for the Rolling Chaplygin Ball, Regul. Chaotic Dyn., 2013, vol. 18, no. 6, pp. 832–859.
35. 35.
Bizyaev, I. A., Bolsinov, A. V., Borisov, A.V., and Mamaev, I. S., Topology and Bifurcations in Nonholonomic Mechanics, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2015, vol. 25, no. 10, 1530028, 21 pp.
36. 36.
Altafini, C., Some Properties of the General n-Trailer, Internat. J. Control, 2001, vol. 74, no. 4, pp. 409–424.
37. 37.
Wagner, A., Heffel, E., Arrieta, A. F., Spelsberg-Korspeter G., Hagedorn P., Analysis of an Oscillatory Painlevé — Klein Apparatus with a Nonholonomic Constraint, Differ. Equ. Dyn. Syst., 2013, vol. 21, nos. 1–2, pp. 149–157.
38. 38.
Borisov, A. V. and Mamaev, I. S., Isomorphism and Hamilton Representation of Some Nonholonomic Systems, Siberian Math. J., 2007, vol. 48, no. 1, pp. 26–36; see also: Sibirsk. Mat. Zh., 2007, vol. 48, no. 1, pp. 33–45.
39. 39.
Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Hamiltonization of Nonholonomic Systems in the Neighborhood of Invariant Manifolds, Regul. Chaotic Dyn., 2011, vol. 16, no. 5, pp. 443–464.
40. 40.
Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Hamiltonicity and Integrability of the Suslov Problem, Regul. Chaotic Dyn., 2011, vol. 16, nos. 1–2, pp. 104–116.
41. 41.
Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Rolling of a Homogeneous Ball over a Dynamically Asymmetric Sphere, Regul. Chaotic Dyn., 2011, vol. 16, no. 5, pp. 465–483.
42. 42.
Borisov, A. V., Kilin, A.A., and Mamaev, I. S., New Effects in Dynamics of Rattlebacks, Dokl. Phys., 2006, vol. 51, no. 5, pp. 272–275; see also: Dokl. Akad. Nauk, 2006, vol. 408, no. 2, pp. 192–195.
43. 43.
Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Generalized Chaplygin’s Transformation and Explicit Integration of a System with a Spherical Support, Regul. Chaotic Dyn., 2012, vol. 17, no. 2, pp. 170–190.
44. 44.
de León, M., A Historical Review on Nonholomic Mechanics, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 2012, vol. 106, no. 1, pp. 191–224.
45. 45.
Ivanov A.P., On Detachment Conditions in the Problem on the Motion of a Rigid Body on a Rough Plane, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 355–368.

## Copyright information

© Pleiades Publishing, Ltd. 2015

## Authors and Affiliations

• Alexey V. Borisov
• 1
• Alexander A. Kilin
• 2
• Ivan S. Mamaev
• 3
1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
2. 2.Udmurt State UniversityIzhevskRussia
3. 3.Steklov Mathematical InstituteMoscowRussia