Regular and Chaotic Dynamics

, Volume 20, Issue 6, pp 739–751 | Cite as

Qualitative analysis of the dynamics of a wheeled vehicle

  • Alexey V. Borisov
  • Ivan S. Mamaev
  • Alexander A. Kilin
  • Ivan A. Bizyaev
Article

Abstract

This paper is concerned with the problem of the motion of a wheeled vehicle on a plane in the case where one of the wheel pairs is fixed. In addition, the motion of a wheeled vehicle on a plane in the case of two free wheel pairs is considered. A method for obtaining equations of motion for the vehicle with an arbitrary geometry is presented. Possible kinds of motion of the vehicle with a fixed wheel pair are determined.

Keywords

nonholonomic constraint system dynamics wheeled vehicle Chaplygin system 

MSC2010 numbers

70F25 37J60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., The Problem of Drift and Recurrence for the Rolling Chaplygin Ball, Regul. Chaotic Dyn., 2013, vol. 18, no. 6, pp. 832–859.CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Borisov, A.V., Jalnine, A.Yu., Kuznetsov, S.P., Sataev, I.R., and Sedova, J.V., Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 512–532.CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bottema, O., Die Bewegung eines einfachenWagenmodells, Z. Angew. Math. Mech., 1964, vol. 44, no. 12, pp. 585–593.CrossRefMATHGoogle Scholar
  4. 4.
    Bravo-Doddoli, A. and García-Naranjo, L.C., The Dynamics of an Articulated n-Trailer Vehicle, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 497–517.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Campion, G., Bastin, G., and d’Andréa-Novel, B., Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots, IEEE Trans. Robot. Autom., 1996, vol. 12, no. 1, pp. 47–62.CrossRefGoogle Scholar
  6. 6.
    Giergiel, J. and Żylski, W., Description of Motion of a Mobile Robot by Maggie’s Equations, J. Theor. Appl. Mech., 2005, vol. 43, no. 3, pp. 511–521.Google Scholar
  7. 7.
    Khalaji, A. K. and Moosavian, S.A.A., Dynamic Modeling and Tracking Control of a Car with n Trailers, Multibody Syst. Dyn., 2015, 15 pp.Google Scholar
  8. 8.
    Lobas, L. G., On a Nonholonomic System Serving as a Model of a Four-Wheeled Vehicle, Z. Angew. Math. Mech., 1979, vol. 59, no. 2, pp. 85–91.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Staicu, S., Dynamics Equations of a Mobile Robot Provided with Caster Wheel, Nonlinear Dynam., 2009, vol. 58, no. 1, pp. 237–248.CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Stückler, B., Über die Differentialgleichungen für die Bewegung eines idealisierten Kraftwagens, Arch. Appl. Mech., 1952, vol. 20, no. 5, pp. 337–356.Google Scholar
  11. 11.
    Stückler, B., Über die Berechnung der an rollenden Fahrzeugen wirkenden Haftreibungen, Arch. Appl. Mech., 1955, vol. 23, no. 4, pp. 279–287.Google Scholar
  12. 12.
    Martynenko, Yu.G., The Theory of the Generalized Magnus Effect for Non-Holonomic Mechanical Systems, J. Appl. Math. Mech., 2004, vol. 68, no. 6, pp. 847–855; see also: Prikl. Mat. Mekh., 2004, vol. 68, no. 6, pp. 948–957.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Martynenko, Yu.G., Motion Control of Mobile Wheeled Robots, J. Math. Sci. (N. Y.), 2007, vol. 147, no. 2, pp. 6569–6606; see also: Fundam. Prikl. Mat., 2005, vol. 11, no. 8, pp. 29–80.CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Markeev, A.P., Theoretical Mechanics, Izhevsk: R&C Dynamics, Institute of Computer Science, 2007 (Russian).Google Scholar
  15. 15.
    Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence,R.I.: AMS, 1972.Google Scholar
  16. 16.
    Rocard, Y., L’instabilité en mécanique: Automobiles, avions, ponts suspendus, Paris: Masson, 1954.Google Scholar
  17. 17.
    Bolsinov A. V., Borisov A. V., Mamaev I. S. Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds //Regular and Chaotic Dynamics, 2011, vol. 16, no. 5, pp. 443–464.MathSciNetGoogle Scholar
  18. 18.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S. How to Control Chaplygin’s Sphere Using Rotors, Regul. Chaotic Dyn., 2012, vol. 17, nos. 3–4, pp. 258–272.CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Borisov, A. V. and Mamaev, I. S., Rolling of a Non-homogeneous Ball over a Sphere without Slipping and Twisting, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 153–159.CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Rolling of a Ball without Spinning on a Plane: The Absence of an Invariant Measure in a System with a Complete Set of Integrals, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 571–579.CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Altafini, C., Some Properties of the General n-trailer, Int. J. Control, 2001, vol. 74, no. 4, pp. 409–424.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Alexey V. Borisov
    • 1
  • Ivan S. Mamaev
    • 1
  • Alexander A. Kilin
    • 1
  • Ivan A. Bizyaev
    • 1
  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations