Advertisement

Regular and Chaotic Dynamics

, Volume 20, Issue 6, pp 729–738 | Cite as

On geodesics of the rotation group SO(3)

  • Alyssa Novelia
  • Oliver M. O’Reilly
Article

Abstract

Geodesics on SO(3) are characterized by constant angular velocity motions and as great circles on a three-sphere. The former interpretation is widely used in optometry and the latter features in the interpolation of rotations in computer graphics. The simplicity of these two disparate interpretations belies the complexity of the corresponding rotations. Using a quaternion representation for a rotation, we present a simple proof of the equivalence of the aforementioned characterizations and a straightforward method to establish features of the corresponding rotations.

Keywords

quaternions constraints geodesics Listing’s law Slerp 

MSC2010 numbers

70E40 53D25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apéry, F., Models of the Real Projective Plane: Computer Graphics of Steiner and Boy Surfaces, Braunschweig: Vieweg, 1987.CrossRefzbMATHGoogle Scholar
  2. 2.
    Cannata, G. and Maggiali, M., Models for the Design of Bioinspired Robot Eyes, IEEE Trans. on Robotics, 2008, vol. 24, no. 1, pp. 27–44.CrossRefGoogle Scholar
  3. 3.
    Casey, J., On the Representation of Rigid Body Rotational Dynamics in Hertzian Configuration Space, Int. J. Eng. Sci., 2011, vol. 49, no. 12, pp. 1388–1396.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Dam, E. B., Koch, M., and Lillholm, M., Quaternions, Interpolation and Animation, Technical Report DIKU-TR-98/5, Department of Computer Science, University of Copenhagen (1998).Google Scholar
  5. 5.
    Demiralp, C., Hughes, J. F., and Laidlaw, D.H., Coloring 3D Line Fields Using Boy’s Real Projective Plane Immersion, IEEE Trans. on Visualization and Computer Graphics, 2009, vol. 15, no. 6, pp. 1457–1464.CrossRefGoogle Scholar
  6. 6.
    Ge, Q. J. and Ravani, B., Geometric Construction of Bézier Motions, ASME J. Mech. Design, 1995, vol. 116, no. 3, pp. 749–755.CrossRefGoogle Scholar
  7. 7.
    Ghosh, B. and Wijayasinghe, I., Dynamics of Human Head and Eye Rotations under Donders’ Constraint, IEEE Trans. on Automatic Control, 2012, vol. 57, no. 10, pp. 2478–2489.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Ghosh, B., Wijayasinghe, I., and Kahagalage, S., A Geometric Approach to Head/Eye Control, IEEE Access, 2014, vol. 2, pp. 316–322.CrossRefGoogle Scholar
  9. 9.
    Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, Boca Raton, Fla.: CRC, 1996.Google Scholar
  10. 10.
    von Helmholtz, H., Über die normalen Bewegungen des menschlichen Auges, Archiv für Ophthalmologie, 1863, vol. 9, no. 2, pp. 153–214.Google Scholar
  11. 11.
    von Helmholtz, H., A Treatise on Physiological Optics: Vol. 3, New York: Dover, 1962.Google Scholar
  12. 12.
    Hepp, K., Theoretical Explanations of Listing’s Law and Their Implication for Binocular Vision, Vision Res., 1995, vol. 35, nos. 23–24, pp. 3237–3241.CrossRefGoogle Scholar
  13. 13.
    Möller, M. and Glocker, C., Rigid Body Dynamics with a Scalable Body, Quaternions and Perfect Constraints, Multibody Syst. Dyn., 2012, vol. 27, no. 4, pp. 437–454.CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Morton, H. S. J., Hamiltonian and Lagrangian Formulations of Rigid Body Rotational Dynamics Based on Euler Parameters, J. Astronaut. Sci., 1993, vol. 41, no. 4, pp. 569–591.MathSciNetGoogle Scholar
  15. 15.
    Nikravesh, P.E., Wehage, R.A., and Kwon, O.K., Euler Parameters in Computational Kinematics and Dynamics: Part 1, ASME J. Mech., Trans., and Automation in Design, 1985, vol. 107, no. 3, pp. 358–365.CrossRefGoogle Scholar
  16. 16.
    Novelia, A. and O’Reilly, O.M., On the Dynamics of the Eye: Geodesics on a Configuration Manifold, Motions of the Gaze Direction and Helmholtz’s Theorem, Nonlinear Dynam., 2015, vol. 80, no. 3, pp. 1303–1327.CrossRefGoogle Scholar
  17. 17.
    O’Reilly, O.M. and Payen, S., The Attitudes of Constant Angular Velocity Motions, Internat. J. Non-Linear Mech., 2006, vol. 41, nos. 6–7, pp. 1–10.MathSciNetGoogle Scholar
  18. 18.
    O’Reilly, O.M. and Varadi, P.C., Hoberman’s Sphere, Euler Parameters and Lagrange’s Equations, J. Elasticity, 1999, vol. 56, no. 2, pp. 171–180.CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Park, F.C. and Ravani, B., Bézier Curves on Riemannian Manifolds and Lie Groups with Kinematics Applications, ASME J. Mech. Design, 1995, vol. 117, no. 1, pp. 36–40.CrossRefGoogle Scholar
  20. 20.
    Poinsot, L., Outlines of a New Theory of Rotatory Motion, Cambridge: Cambridge Univ. Press, 1834.Google Scholar
  21. 21.
    Polpitiya, A., Dayawansa, W., Martin, C., and Ghosh, B., Geometry and Control of Human Eye Movements, IEEE Trans. on Automatic Control, 2007, vol. 52, no. 2, pp. 170–180.CrossRefMathSciNetGoogle Scholar
  22. 22.
    Shoemake, K., Animating Rotation with Quaternion Curves, in Proc. of the 12th Annual Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH’85), New York: ACM, 1985, pp. 245–254.CrossRefGoogle Scholar
  23. 23.
    Shuster, M. D., A Survey of Attitude Representations, J. Astronaut. Sci., 1993, vol. 41, no. 4, pp. 439–517.MathSciNetGoogle Scholar
  24. 24.
    Tweed, D., Cadera, W., and Vilis, T., Computing Three-Dimensional Eye Position Quaternions and Eye Velocity from Search Coil Signals, Vision Res., 1990, vol. 30, no. 1, pp. 97–110.CrossRefGoogle Scholar
  25. 25.
    Žefran, M. and Kumar, V., Interpolation Schemes for Rigid Body Motions, Computer-Aided Design, 1998, vol. 30, no. 3, pp. 179–189.CrossRefzbMATHGoogle Scholar
  26. 26.
    Westheimer, G., Kinematics of the Eye, J. Opt. Soc. Am., 1957, vol. 47, no. 10, pp. 967–974.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations