Advertisement

Regular and Chaotic Dynamics

, Volume 20, Issue 6, pp 649–666 | Cite as

Hyperbolic chaos in self-oscillating systems based on mechanical triple linkage: Testing absence of tangencies of stable and unstable manifolds for phase trajectories

  • Sergey P. Kuznetsov
Article

Abstract

Dynamical equations are formulated and a numerical study is provided for selfoscillatory model systems based on the triple linkage hinge mechanism of Thurston–Weeks–Hunt–MacKay. We consider systems with a holonomic mechanical constraint of three rotators as well as systems, where three rotators interact by potential forces. We present and discuss some quantitative characteristics of the chaotic regimes (Lyapunov exponents, power spectrum). Chaotic dynamics of the models we consider are associated with hyperbolic attractors, at least, at relatively small supercriticality of the self-oscillating modes; that follows from numerical analysis of the distribution for angles of intersection of stable and unstable manifolds of phase trajectories on the attractors. In systems based on rotators with interacting potential the hyperbolicity is violated starting from a certain level of excitation.

Keywords

dynamical system chaos hyperbolic attractor Anosov dynamics rotator Lyapunov exponent self-oscillator 

MSC2010 numbers

37D45 37D20 34D08 32Q05 70F20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc. (NS), 1967, vol. 73, pp. 747–817.CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Shilnikov, L., Mathematical Problems of Nonlinear Dynamics: A Tutorial, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1997, vol. 7, no. 9, pp. 1953–2001.CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Dynamical Systems 9: Dynamical Systems with Hyperbolic Behaviour, D.V.Anosov (Ed.), Encyclopaedia Math. Sci., vol. 66, Berlin: Springer, 1995.Google Scholar
  4. 4.
    Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., vol. 54, Cambridge: Cambridge Univ. Press, 1995.Google Scholar
  5. 5.
    Afraimovich, V. and Hsu, S.-B., Lectures on Chaotic Dynamical Systems, AMS/IP Stud. Adv. Math., vol. 28, Providence,R.I.: AMS, 2003.Google Scholar
  6. 6.
    Pesin, Ya.B., Lectures on Partial Hyperbolicity and Stable Ergodicity, Zur. Lect. Adv. Math., Zürich: EMS, 2004.CrossRefzbMATHGoogle Scholar
  7. 7.
    Bonatti, Ch., Díaz, L. J., and Viana, M., Dynamics beyond Uniform Hyperbolicity: A Global Geometric and Probobalistic Perspective, Encyclopaedia Math. Sci., vol. 102, Berlin: Springer, 2005.Google Scholar
  8. 8.
    Kuznetsov, S.P., Example of a Physical System with a Hyperbolic Attractor of the Smale — Williams Type, Phys. Rev. Lett., 2005, vol. 95, no. 14, 144101, 4 pp.CrossRefGoogle Scholar
  9. 9.
    Kuznetsov, S.P. and Seleznev, E.P., Strange Attractor of Smale–Williams Type in the Chaotic Dynamics of a Physical System, J. Exp. Theor. Phys., 2006, vol. 102, no. 2, pp. 355–364; see also: Zh. Èksper. Teoret. Fiz., 2006, vol. 129, no. 2, pp. 400–412.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Isaeva, O.B., Jalnine, A.Yu., and Kuznetsov, S.P., Arnold’s Cat Map Dynamics in a System of Coupled Nonautonomous van der Pol Oscillators, Phys. Rev. E, 2006, vol. 74, no. 4, 046207, 5 pp.CrossRefGoogle Scholar
  11. 11.
    Kuznetsov, S.P. and Pikovsky, A., Autonomous Coupled Oscillators with Hyperbolic Strange Attractors, Phys. D, 2007, vol. 232, no. 2, pp. 87–102.CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Kuznetsov, S.P., Example of Blue Sky Catastrophe Accompanied by a Birth of Smale–Williams Attractor, Regul. Chaotic Dyn., 2010, vol. 15, nos. 2–3, pp. 348–353.CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Kuznetsov, S.P., Hyperbolic Chaos: A Physicist’s View, Berlin: Springer, 2012.CrossRefGoogle Scholar
  14. 14.
    Kuznetsov, S.P., Dynamical Chaos and Uniformly Hyperbolic Attractors: From Mathematics to Physics, Phys. Uspekhi, 2011, vol. 54, no. 2, pp. 119–144; see also: Uspekhi Fiz. Nauk, 2011, vol. 181, no. 2, pp. 121–149.CrossRefGoogle Scholar
  15. 15.
    Kuznetsov, S.P., Plykin Type Attractor in Electronic Device Simulated in MULTISIM, Chaos, 2011, vol. 21, no. 4, 043105, 10 pp.CrossRefGoogle Scholar
  16. 16.
    Isaeva, O.B., Kuznetsov, S.P., and Mosekilde, E., Hyperbolic Chaotic Attractor in Amplitude Dynamics of Coupled Self-Oscillators with Periodic Parameter Modulation, Phys. Rev. E., 2011, vol. 84, no. 1, 016228, 10 pp.CrossRefGoogle Scholar
  17. 17.
    Isaeva, O.B., Kuznetsov, A. S., and Kuznetsov, S. P., Hyperbolic Chaos in Parametric Oscillations of a String, Nelin. Dinam., 2013, vol. 9, no. 1, pp. 3–10 (Russian).Google Scholar
  18. 18.
    Kuznetsov, S.P., Kuznetsov, A. S., and Kruglov, V. P., Hyperbolic Chaos in Systems with Parametrically Excited Patterns of Standing Waves, Nelin. Dinam., 2014, vol. 10, no. 3, pp. 265–277 (Russian).Google Scholar
  19. 19.
    Jalnine, A.Yu., Hyperbolic and Non-Hyperbolic Chaos in a Pair of Coupled Alternately Excited FitzHugh–Nagumo Systems, Commun. Nonlinear Sci. Numer. Simul., 2015, vol. 23, nos. 1–3, pp. 202–208.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kuznetsov, S.P., Some Mechanical Systems Manifesting Robust Chaos, Nonlinear Dynamics & Mobile Robotics, 2013, vol. 1, no. 1, pp. 3–22.Google Scholar
  21. 21.
    Borisov, A.V., Kazakov, A.O., and Kuznetsov, S.P., Nonlinear Dynamics of the Rattleback: A Nonholonomic Model, Physics–Uspekhi, 2014, vol. 57, no. 5, pp. 453–460; see also: Uspekhi Fiz. Nauk, 2014, vol. 184, no. 5, pp. 493–500.Google Scholar
  22. 22.
    Kuznetsov, S.P., Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-Dimensional Models, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 345–382.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Borisov, A.V. and Mamaev, I. S., On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation, Chaos, 2006, vol. 16, no. 1, 013118, 7 pp.CrossRefMathSciNetGoogle Scholar
  24. 24.
    Borisov, A.V., Jalnine, A.Yu., Kuznetsov, S.P., Sataev, I.R., and Sedova, J.V., Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 512–532.CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Thurston, W.P. and Weeks, J. R., The Mathematics of Three-Dimensional Manifolds, Sci. Am., 1984, vol. 251, no. 1, pp. 94–106.CrossRefGoogle Scholar
  26. 26.
    Kozlov, V.V., Topological obstacles to the integrability of natural mechanical systems, Soviet Math. Dokl., 1980, vol. 20, pp. 1413–1415.Google Scholar
  27. 27.
    Anosov, D.V., Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Trudy Mat. Inst. Steklov, 1967, vol. 90, pp. 3–210 (Russian).MathSciNetGoogle Scholar
  28. 28.
    Balazs, N. L. and Voros, A., Chaos on the Pseudosphere, Phys. Rep., 1986, vol. 143, no. 3, pp. 109–240.CrossRefMathSciNetGoogle Scholar
  29. 29.
    Hunt, T. J. and MacKay, R. S., Anosov Parameter Values for the Triple Linkage and a Physical System with a Uniformly Chaotic Attractor, Nonlinearity, 2003, vol. 16, no. 4, pp. 1499–1510.CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Magalhães, M. L. S. and Pollicott, M., Geometry and Dynamics of Planar Linkages, Comm. Math. Phys., 2013, vol. 317, no. 3, pp. 615–634.CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Kourganoff, M., Anosov Geodesic Flows, Billiards and Linkages, arXiv:1503.04305 (2015).Google Scholar
  32. 32.
    Kozlov, V.V., Closed orbits and chaotic dynamics of a charged particle in a periodic electromagnetic field, Regul. Chaotic Dyn., 1997, vol. 2, no. 1, pp. 3–12.zbMATHGoogle Scholar
  33. 33.
    Kuznetsov, S.P., Chaos in the System of Three Coupled Rotators: From Anosov Dynamics to Hyperbolic Attractor, Izv. Saratov. Univ. (N. S.), Ser. Fiz., 2015, vol. 15, no. 2, pp. 5–17 (Russian).Google Scholar
  34. 34.
    Lai, Y.-Ch., Grebogi, C., Yorke, J. A., and Kan, I., How Often Are Chaotic Saddles Nonhyperbolic?, Nonlinearity, 1993, vol. 6, no. 5, pp. 779–798.CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Anishchenko, V. S., Kopeikin, A. S., Kurths, J., Vadivasova, T.E., Strelkova, G. I., Studying Hyperbolicity in Chaotic Systems, Phys. Lett. A, 2000, vol. 270, no. 6, pp. 301–307.CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Ginelli, F., Poggi, P., Turchi, A., Chaté, H., Livi, R., and Politi, A., Characterizing Dynamics with Covariant Lyapunov Vectors, Phys. Rev. Lett., 2007, vol. 99, no. 13, 130601, 4 pp.CrossRefGoogle Scholar
  37. 37.
    Kuptsov, P.V., Fast Numerical Test of Hyperbolic Chaos, Phys. Rev. E, 2012, vol. 85, no. 1, 015203, 4 pp.CrossRefMathSciNetGoogle Scholar
  38. 38.
    Gantmacher, F.R., Lectures in Analytical Mechanics, Moscow: Mir, 1975.Google Scholar
  39. 39.
    Goldstein, H., Poole, Ch.P. ffixJr., Safko, J. L., Classical Mechanics, 3rd ed., Boston,Mass.: Addison-Wesley, 2001.Google Scholar
  40. 40.
    Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory; P. 2: Numerical Application, Meccanica, 1980, vol. 15, pp. 9–30.CrossRefzbMATHGoogle Scholar
  41. 41.
    Jenkins, G.M. and Watts, D.G., Spectral Analysis and Its Applications, San Francisco,Calif.: Holden-Day, 1968.zbMATHGoogle Scholar
  42. 42.
    Rössler, O.E., An Equation for Hyperchaos, Phys. Lett. A, 1979, vol. 71, no. 2, pp. 155–157.CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    Sinaĭ, Ya.G., The Stochasticity of Dynamical Systems: Selected Translations, Selecta Math. Soviet., 1981, vol. 1, no. 1, pp. 100–119.MathSciNetGoogle Scholar
  44. 44.
    Kuznetsov, S.P. and Sataev, I.R., Hyperbolic Attractor in a System of Coupled Non-Autonomous van derPol Oscillators: Numerical Test for Expanding and Contracting Cones, Phys. Lett. A, 2007, vol. 365, nos. 1–2, pp. 97–104.CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Udmurt State UniversityIzhevskRussia
  2. 2.Kotelnikov’s Institute of Radio-Engineering and Electronics of RASSaratov BranchSaratovRussia

Personalised recommendations