Regular and Chaotic Dynamics

, Volume 20, Issue 5, pp 605–626 | Cite as

Dynamics of the suslov problem in a gravitational field: Reversal and strange attractors

  • Ivan A. BizyaevEmail author
  • Alexey V. Borisov
  • Alexey O. Kazakov


In this paper, we present some results on chaotic dynamics in the Suslov problem which describe the motion of a heavy rigid body with a fixed point, subject to a nonholonomic constraint, which is expressed by the condition that the projection of angular velocity onto the body-fixed axis is equal to zero. Depending on the system parameters, we find cases of regular (in particular, integrable) behavior and detect various attracting sets (including strange attractors) that are typical of dissipative systems. We construct a chart of regimes with regions characterizing chaotic and regular regimes depending on the degree of conservativeness. We examine in detail the effect of reversal, which was observed previously in the motion of rattlebacks.


Suslov problem nonholonomic constraint reversal strange attractor 

MSC2010 numbers

37J60 37N15 37G35 70E18 70F25 70H45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borisov, A. V. and Mamaev, I. S., The Rolling Motion of a Rigid Body on a Plane and a Sphere: Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 177–200.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Borisov, A. V. and Mamaev, I. S., Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems, Regul. Chaotic Dyn., 2008, vol. 13, no. 5, pp. 443–490.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., The Problem of Drift and Recurrence for the Rolling Chaplygin Ball, Regul. Chaotic Dyn., 2013, vol. 18, no. 6, pp. 832–859.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Walker, G.T., On a Curious Dynamical Property of Celts, Proc. Cambridge Phil. Soc., 1895. vol. 8, pt. 5, pp. 305–306.Google Scholar
  5. 5.
    Walker, J., The Amateur Scientist: The Mysterious ¡¡Rattleback¿¿: A Stone That Spins in One Direction and Then Reverses, Sci. Am., 1979, vol. 241, pp. 172–184.CrossRefGoogle Scholar
  6. 6.
    Borisov, A. V. and Mamaev, I. S., Strange Attractors in Rattleback Dynamics, Physics–Uspekhi, 2003, vol. 46, no. 4, pp. 393–403; see also: Uspekhi Fiz. Nauk, 2003, vol. 173, no. 4, pp. 408–418.MathSciNetGoogle Scholar
  7. 7.
    Gonchenko, A. S., Gonchenko, S.V., and Kazakov, A.O., Richness of Chaotic Dynamics in the Nonholonomic Model of Celtic Stone, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 521–538.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Suslov, G. K., Theoretical Mechanics, Moscow: Gostekhizdat, 1946 (Russian).Google Scholar
  9. 9.
    Vagner, V.V., A Geometric Interpretation of the Motion of Nonholonomic Dynamical Systems, Tr. semin. po vectorn. i tenzorn. anal., 1941, no. 5, pp. 301–327 (Russian).zbMATHMathSciNetGoogle Scholar
  10. 10.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Hamiltonicity and Integrability of the Suslov Problem, Regul. Chaotic Dyn., 2011, vol. 16, nos. 1–2, pp. 104–116.zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Fedorov, Yu.N., Maciejewski, A. J., and Przybylska, M., Suslov Problem: Integrability, Meromorphic and Hypergeometric Solutions, Nonlinearity, 2009, vol. 22, no. 9, pp. 2231–2259.zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Kozlov, V.V., On the Theory of Integration of the Equations of Nonholonomic Mechanics, Uspekhi Mekh., 1985, vol. 8, no. 3, pp. 85–107 (Russian).Google Scholar
  13. 13.
    Borisov, A. V., Kazakov, A.O., and Sataev, I. R., The Reversal and Chaotic Attractor in the Nonholonomic Model of Chaplygin’s Top, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 718–733.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kane, T.R. and Levinson, D.A., A Realistic Solution of the Symmetric Top Problem, J. Appl. Mech., 1978, vol. 45, no. 4, pp. 903–909.CrossRefGoogle Scholar
  15. 15.
    Borisov, A. V., Kilin, A.A., Mamaev, I. S., New Effects in Dynamics of Rattlebacks, Dokl. Phys., 2006, vol. 51, no. 5, pp. 272–275; see also: Dokl. Akad. Nauk, 2006, vol. 408, no. 2, pp. 192–195.zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Nordmark, A. and Essen, H., Systems with a Preferred Spin Direction, Proc. R. Soc. London Ser. A, 1999, vol. 455, no. 1983, pp. 933–941.zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kazakov, A. O., Strange Attractors and Mixed Dynamics in the Problem of an Unbalanced Rubber Ball Rolling on a Plane, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 508–520.zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Feigenbaum, M. J., Universal Behavior in Nonlinear Systems, Phys. D, 1983, vol. 7, nos. 1–3, pp. 16–39.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Topology and Stability of Integrable Systems, Russian Math. Surveys, 2010, vol. 65, no. 2, pp. 259–317; see also: Uspekhi Mat. Nauk, 2010, vol. 65, no. 2(392), pp. 71–132.zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Kozlova, Z.P., The Suslov Problem, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1989, no. 1, pp. 13–16 (Russian).Google Scholar
  21. 21.
    Kozlov, V.V., The Phenomenon of Reversal in the Euler–Poincaré–Suslov Nonholonomic Systems, Preprint, arXiv:1509.01089 (2015).Google Scholar
  22. 22.
    Kharlamova-Zabelina, E. I., Rapid Rotation of a Rigid Body around a Fixed Point in the Presence of a Non-Holonomic Constraint, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1957, no. 6, pp. 25–34 (Russian).Google Scholar
  23. 23.
    Ziglin, S. L., On the Absence of an Additional First Integral in the Special Case of the G.K. Suslov Problem, Russian Math. Surveys, 1997, vol. 52, no. 2, pp. 434–435; see also: Uspekhi Mat. Nauk, 1997. vol. 52, no. 2(314), pp. 167–168.zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Mahdi, A. and Valls, C., Analytic Non-Integrability of the Suslov Problem, J. Math. Phys., 2012. vol. 53, no. 12, 122901, 8 pp.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Maciejewski, A. J. and Przybylska, M., Nonintegrability of the Suslov Problem, J. Math. Phys., 2004, vol. 45, no. 3, pp. 1065–1078.zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Fernandez, O. E., Bloch, A.M., and Zenkov, D. V., The Geometry and Integrability of the Suslov Problem, J. Math. Phys., 2014. vol. 55, no. 11, 112704, 14 pp.Google Scholar
  27. 27.
    Kharlamova-Zabelina, E. I., Rigid Body Motion about a Fixed Point under Nonholonomic Constraint, Tr. Donetsk. Industr. Inst., 1957, vol. 20, no. 1, pp. 69–75 (Russian).Google Scholar
  28. 28.
    Tatarinov, Ya.V., Separation of Variables and New Topological Phenomena in Holonomic and Nonholonomic Systems, Tr. Sem. Vektor. Tenzor. Anal., 1988, vol. 23, pp. 160–174 (Russian).zbMATHMathSciNetGoogle Scholar
  29. 29.
    Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Jacobi Integral in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 383–400.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Rolling of a Ball without Spinning on a Plane: The Absence of an Invariant Measure in a System with a Complete Set of Integrals, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 571–579.zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 277–328.zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Borisov, A. V. and Mamaev, I. S., Dynamics of a Rigid Body: Hamiltonian Methods, Integrability, Chaos, 2nd ed., Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).Google Scholar
  33. 33.
    Bizyaev, I. A., Borisov, A.V., and Mamaev, I. S., The Dynamics of Nonholonomic Systems Consisting of a Spherical Shell with a Moving Rigid Body Inside, Regul. Chaotic Dyn., 2014, vol. 19, no. 2, pp. 198–213.zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Arnol’d, V. I., Kozlov, V.V., and Neishtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed., Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 2006.Google Scholar
  35. 35.
    Kozlov, V.V., On the Existence of an Integral Invariant of a Smooth Dynamic System, J. Appl. Math. Mech., 1987, vol. 51, no. 4, pp. 420–426; see also: Prikl. Mat. Mekh., 1987, vol. 51, no. 4, pp. 538–545.zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory; P. 2: Numerical Application, Meccanica, 1980, vol. 15, pp. 9–30.zbMATHCrossRefGoogle Scholar
  37. 37.
    Borisov, A. V., Jalnine, A.Yu., Kuznetsov, S.P., Sataev, I.R., and Sedova, J. V., Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 512–532.zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Pikovsky, A. and Topaj, D., Reversibility vs. Synchronization in Oscillator Latties, Phys. D, 2002, vol. 170, pp. 118–130.zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Roberts, J. A. G. and Quispe, G. R. W., Chaos and Time-Reversal Symmetry. Order and Chaos in Reversible Dynamical Systems, Phys. Rep., 1992, vol. 216, nos. 2–3, pp. 63–177.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Kazakov, A. O., On the Chaotic Dynamics of a Rubber Ball with Three Internal Rotors, Nonlinear Dynamics & Mobile Robotics, 2014, vol. 2, no. 1, pp. 73–97.Google Scholar
  41. 41.
    Rocard, Y., L’instabilité en mécanique: Automobiles, avions, ponts suspendus, Paris: Masson, 1954.Google Scholar
  42. 42.
    Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence, R.I.: AMS, 1972.Google Scholar
  43. 43.
    García-Naranjo, L.C., Maciejewski, A. J., Marrero, J.C., and Przybylska, M., The Inhomogeneous Suslov Problem, Phys. Lett. A, 2014, vol. 378, nos. 32–33, pp. 2389–2394.zbMATHCrossRefGoogle Scholar
  44. 44.
    Fassò, F. and Sansonetto, N., Conservation of Energy and Momenta in Nonholonomic Systems with Affine Constraints, Regul. Chaotic Dyn., 2015, vol. 20, no. 4, pp. 449–462.MathSciNetCrossRefGoogle Scholar
  45. 45.
    Bolsinov, A.V., Borisov, A. V., Mamaev, I. S., Geometrisation of Chaplygin’s reducing multiplier theorem, Nonlinearity, 2015, vol. 28, no. 7, pp. 2307–2318.MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Ivan A. Bizyaev
    • 1
    • 2
    Email author
  • Alexey V. Borisov
    • 2
  • Alexey O. Kazakov
    • 1
    • 3
  1. 1.Udmurt State UniversityIzhevskRussia
  2. 2.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.National Research University Higher School of EconomicsNizhny NovgorodRussia

Personalised recommendations