Advertisement

Regular and Chaotic Dynamics

, Volume 20, Issue 5, pp 518–541 | Cite as

Experimental investigation of the motion of a body with an axisymmetric base sliding on a rough plane

  • Alexey V. Borisov
  • Yury L. Karavaev
  • Ivan S. Mamaev
  • Nadezhda N. Erdakova
  • Tatyana B. Ivanova
  • Valery V. Tarasov
Article

Abstract

In this paper we investigate the dynamics of a body with a flat base (cylinder) sliding on a horizontal rough plane. For analysis we use two approaches. In one of the approaches using a friction machine we determine the dependence of friction force on the velocity of motion of cylinders. In the other approach using a high-speed camera for video filming and the method of presentation of trajectories on a phase plane for analysis of results, we investigate the qualitative and quantitative behavior of the motion of cylinders on a horizontal plane. We compare the results obtained with theoretical and experimental results found earlier. In addition, we give a systematic review of the well-known experimental and theoretical results in this area.

Keywords

dry friction linear pressure distribution two-dimensional motion planar motion Coulomb law 

MSC2010 numbers

70F40 70E18 70-05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kragelskii, I.V., Friction and Wear, London: Butterworths, 1965.Google Scholar
  2. 2.
    Bowden, F.P. and Tabor, D., The Friction and Lubrication of Solids, Oxford: Oxford Univ. Press, 2001.MATHGoogle Scholar
  3. 3.
    Dowson, D., History of Tribology, London: Longman, 1979.Google Scholar
  4. 4.
    Reynolds, O., On Rolling Friction, Philos. Trans. R. Soc. Lond., 1876, vol. 166, pp. 155–174.CrossRefGoogle Scholar
  5. 5.
    Coulomb, Ch.A., Theorie des machines simples, en ayant égard au frottement de leurs parties et à la roideur des cordages, Paris: Bachelier, 1821.Google Scholar
  6. 6.
    Stribeck R. H. Die wesentlichen Eigenschaften der Gleit- und Rollenlager, Z. Ver. dt. Ing., 1902, vol. 46, no. 38, pp. 1341–1348; no. 39, pp. 1463–1470.Google Scholar
  7. 7.
    Hydrodynamic Theory of Lubrication, L. S. Leibenzon (Ed.), Moscow: GTTI, 1934 (Russian).Google Scholar
  8. 8.
    Euler, J. A., Recherches plus exactes sur l’effet des moulins à vent, Mem. Acad. Roy. Sci. Berlin, 1758, vol. 12, pp. 165–234.Google Scholar
  9. 9.
    Coriolis, G., Théorie mathématique des effets du jeu de billard, Paris: Carilian-Goeury, 1835.Google Scholar
  10. 10.
    Resal, H., Commentaire à la théorie mathématique du jeu de billard, J. Math. Pures Appl. (3), 1883, vol. 9, pp. 65–98.Google Scholar
  11. 11.
    Appell, P., Sur le mouvement d’une bille de billard avec frottement de roulement, J. Math. Pures Appl. (6), 1911, vol. 7, pp. 85–96.MATHGoogle Scholar
  12. 12.
    Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 277–328.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Borisov, A.V. and Mamaev, I. S., Strange Attractors in Rattleback Dynamics, Physics–Uspekhi, 2003, vol. 46, no. 4, pp. 393–403MathSciNetGoogle Scholar
  14. 13a.
    Borisov, A.V. and Mamaev, I. S., Strange Attractors in Rattleback Dynamics, see also: Uspekhi Fiz. Nauk, 2003, vol. 173, no. 4, pp. 407–418.MathSciNetGoogle Scholar
  15. 14.
    Walker, G.T., On a Curious Dynamical Property of Celts, Proc. Cambridge Phil. Soc., 1895. vol. 8, pt. 5, pp. 305–306.Google Scholar
  16. 15.
    Borisov, A.V., Kazakov, A.O., and Kuznetsov, S.P., Nonlinear Dynamics of the Rattleback: A Nonholonomic Model, Physics–Uspekhi, 2014, vol. 57, no. 5, pp. 453–460Google Scholar
  17. 15a.
    Borisov, A.V., Kazakov, A.O., and Kuznetsov, S.P., Nonlinear Dynamics of the Rattleback: A Nonholonomic Model, see also: Uspekhi Fiz. Nauk, 2014, vol. 184, no. 5, pp. 493–500.Google Scholar
  18. 16.
    Zhuravlev, V. Ph. and Klimov, D.M., Global Motion of the Celt, Mech. Solids, 2008, vol. 43, no. 3, pp. 320–327CrossRefGoogle Scholar
  19. 16a.
    Zhuravlev, V. Ph. and Klimov, D.M., Global Motion of the Celt, see also: Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 2008, no. 3, pp. 8–16.Google Scholar
  20. 17.
    Bobylev, D., Kugel, die ein Gyroskop einschliesst und auf einer Horizontalebene rollt, ohne dabei zu gleiten, Mat. Sb., 1892, vol. 16, no. 3, pp. 544–581 (Russian).Google Scholar
  21. 18.
    Zhukovsky, N. E., On Gyroscopic Ball of D.K.Bobylev, in Collected Works: Vol. 1, Moscow: Gostekhizdat, 1948. pp. 257–289 (Russian).Google Scholar
  22. 19.
    Borisov, A.V., Jalnine, A.Yu., Kuznetsov, S.P., Sataev, I.R., and Sedova, J.V., Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 512–532.MathSciNetMATHCrossRefGoogle Scholar
  23. 20.
    Markeev, A.P., On the Dynamics of a Solid on an Absolutely Rough Plane, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 153–160.MathSciNetMATHCrossRefGoogle Scholar
  24. 21.
    Meijaard, J.P., Papadopoulos, J.M., Ruina, A., and Schwab, A. L., Linearized Dynamics Equations for the Balance and Steer of a Bicycle: A Benchmark and Review, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2007, vol. 463, no. 2084, pp. 1955–1982.MathSciNetMATHCrossRefGoogle Scholar
  25. 22.
    Takano, H., Spin Reversal of a Rattleback with Viscous Friction, Regul. Chaotic Dyn., 2014, vol. 19, no. 1, pp. 81–99.MathSciNetCrossRefGoogle Scholar
  26. 23.
    Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence, R.I.: AMS, 1972.Google Scholar
  27. 24.
    Zhuravlev, V. F., Notion of Constraint in Analytical Mechanics, Nelin. Dinam., 2012, vol. 8, no. 4, pp. 853–860 (Russian).Google Scholar
  28. 25.
    Kireenkov, A. A., Semendyaev, S. V., and Filatov, V. F., Experimental Study of Coupled Two-Dimensional Models of Sliding and Spinning Friction, Mech. Solids, 2010, vol. 45, no. 6, pp. 921–930CrossRefGoogle Scholar
  29. 25a.
    Kireenkov, A. A., Semendyaev, S. V., and Filatov, V. F., Experimental Study of Coupled Two-Dimensional Models of Sliding and Spinning Friction, see also: Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 2010, no. 6, pp. 192–202.Google Scholar
  30. 26.
    Ciocci, M.C. and Langerock, B., Dynamics of the Tippe Top via Routhian Reduction, Regul. Chaotic Dyn., 2007, vol. 12, no. 6, pp. 602–614.MathSciNetMATHCrossRefGoogle Scholar
  31. 27.
    Zobova, A.A., Comments on the Paper by M.C. Ciocci, B. Malengier, B. Langerock, and B. Grimonprez “Towards a Prototype of a Spherical Tippe Top”, Regul. Chaotic Dyn., 2012, vol. 17, nos. 3–4, pp. 367–369.MathSciNetMATHCrossRefGoogle Scholar
  32. 28.
    Jensen, M.T. and Shegelski, M.R.A., The Motion of Curling Rocks: Experimental Investigation and Semi-Phenomenological Description, Can. J. Phys., 2004, vol. 82, pp. 1–19.CrossRefGoogle Scholar
  33. 29.
    Ivanov, A.P. and Shuvalov, N.D., On the Motion of a Heavy Body with a Circular Base on a Horizontal Plane and Riddles of Curling, Regul. Chaotic Dyn., 2012, vol. 17, no. 1, pp. 97–104.MathSciNetMATHCrossRefGoogle Scholar
  34. 30.
    Frohlich, C., What Makes Bowling Balls Hook? Amer. J. Phys., 2004, vol. 72, no. 9, pp. 1170–1177.CrossRefGoogle Scholar
  35. 31.
    Earnshaw, S., Dynamics, or An Elementary Treatise on Motion, 3rd ed., Cambridge: Deighton, 1844.Google Scholar
  36. 32.
    Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Jacobi Integral in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 383–400.MathSciNetCrossRefGoogle Scholar
  37. 33.
    Borisov, A.V., Mamaev, I. S., and Karavaev, Yu. L., On the Loss of Contact of the Euler Disk, Nonlinear Dynam., 2015, vol. 79, no. 4, pp. 2287–2294.MathSciNetCrossRefGoogle Scholar
  38. 34.
    Karavaev, Yu. L. and Kilin, A.A., The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform, Regul. Chaotic Dyn., 2015, vol. 20, no. 2, pp. 134–152.MathSciNetCrossRefGoogle Scholar
  39. 35.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How To Control Chaplygin’s Sphere Using Rotors, Regul. Chaotic Dyn., 2012, vol. 17, nos. 3–4, pp. 258–272.MathSciNetMATHCrossRefGoogle Scholar
  40. 36.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How To Control Chaplygin’s Sphere Using Rotors: 2, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 144–158.MathSciNetMATHCrossRefGoogle Scholar
  41. 37.
    Painlevé, P., Leçons sur le frottement, Paris: Hermann, 1895.MATHGoogle Scholar
  42. 38.
    MacMillan, W. D., Dynamics of Rigid Bodies, New York: McGraw-Hill, 1936.MATHGoogle Scholar
  43. 39.
    Borisov, A.V., Erdakova, N.N., Ivanova, T.B., and Mamaev, I. S., The Dynamics of a Body with an Axisymmetric Base Sliding on a Rough Plane, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 607–634.MathSciNetCrossRefGoogle Scholar
  44. 40.
    Weidman, P. D. and Malhotra, Ch.P., On the Terminal Motion of Sliding Spinning Disks with Uniform Coulomb Friction, Phys. D, 2007, vol. 233, no. 1, pp. 1–13.MathSciNetMATHCrossRefGoogle Scholar
  45. 41.
    Kozlov, V.V., Notes on Dry Friction and Nonholonomic Constraints, Nelin. Dinam., 2010, vol. 6, no. 4, pp. 903–906 (Russian).Google Scholar
  46. 42.
    Kozlov, V.V., On the Integration Theory of Equations of Nonholonomic Mechanics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 191–176.CrossRefGoogle Scholar
  47. 43.
    Ivanov, A.P., Comparative Analysis of Friction Models in Dynamics of a Ball on a Plane, Nelin. Dinam., 2010, vol. 6, no. 4, pp. 907–912 (Russian).Google Scholar
  48. 44.
    Lévy-Leblond, J.-M., The ANAIS Billiard Table, Eur. J. Phys., 1986, vol. 7, no. 4, pp. 252–258.CrossRefGoogle Scholar
  49. 45.
    Fufaev, N.A., A Sphere Rolling on a Horizontal Rotating Plane, J. Appl. Math. Mech., 1983, vol. 47, no. 1, pp. 27–29MathSciNetCrossRefGoogle Scholar
  50. 45a.
    Fufaev, N.A., A Sphere Rolling on a Horizontal Rotating Plane, see also: Prikl. Mat. Mekh., 1983, vol. 47, no. 1, pp. 43–47.Google Scholar
  51. 46.
    Fufaev, N.A., On the idealization of Surface of Contact in Form of Point Contact in the Problem of Rolling, J. Appl. Math. Mech., 1966, vol. 30, no. 1, pp. 78–84MATHCrossRefGoogle Scholar
  52. 46a.
    Fufaev, N.A., On the idealization of Surface of Contact in Form of Point Contact in the Problem of Rolling, see also: Prikl. Mat. Mekh., 1966, vol. 30, no. 1, pp. 67–72.Google Scholar
  53. 47.
    Voyenli, K. and Eriksen, E., On the Motion of an Ice Hockey Puck, Amer. J. Phys., 1985, vol. 53, pp. 1149–1153.CrossRefGoogle Scholar
  54. 48.
    Zhukovskii, N. E., Equilibrium Conditions for a Rigid Body Based on a Fixed Plane with a Certain Area and Able to Move Along This Plane with Friction, in Collected Works: Vol. 1, Moscow: Gostekhteorizdat, 1949. pp. 339–354 (Russian).Google Scholar
  55. 49.
    Hertz, H., Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt, 2nd ed., Leipzig: Barth, 1910.MATHGoogle Scholar
  56. 50.
    Kirchhoff, G., Vorlesungen über mathematische Physik: Vol. 1. Mechanik, Leipzig: Teubner, 1876.Google Scholar
  57. 51.
    Zhuravlev, V. F., On a Model of Dry Friction in the Problem of the Rolling of Rigid Bodies, J. Appl. Math. Mech., 1998, vol. 62, no. 5, pp. 705–710MathSciNetCrossRefGoogle Scholar
  58. 51a.
    Zhuravlev, V. F., On a Model of Dry Friction in the Problem of the Rolling of Rigid Bodies, see also: Prikl. Mat. Mekh., 1998, vol. 62, no. 5, pp. 762–767.MathSciNetGoogle Scholar
  59. 52.
    Zhuravlev, V. Ph., Dynamics of a Heavy Homogeneous Ball on a Rough Plane, Mech. Solids, 2006, vol. 41, no. 6, pp. 1–5Google Scholar
  60. 52a.
    Zhuravlev, V. Ph., Dynamics of a Heavy Homogeneous Ball on a Rough Plane, see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2006, no. 6, pp. 3–9.Google Scholar
  61. 53.
    Zhuravlev, V. Ph. and Klimov, D.M., On the Dynamics of the Thompson Top (Tippe Top) on the Plane with Real Dry Friction, Mech. Solids, 2005, vol. 40, no. 6, pp. 117–127Google Scholar
  62. 53a.
    Zhuravlev, V. Ph. and Klimov, D.M., On the Dynamics of the Thompson Top (Tippe Top) on the Plane with Real Dry Friction, see also: Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 2005, no. 6, pp. 157–168.Google Scholar
  63. 54.
    Ivanov, A.P., A Dynamically Consistent Model of the Contact Stresses in the Plane Motion of a Rigid Body, J. Appl. Math. Mech., 2009, vol. 73, no. 2, pp. 134–144MathSciNetCrossRefGoogle Scholar
  64. 54a.
    Ivanov, A.P., A Dynamically Consistent Model of the Contact Stresses in the Plane Motion of a Rigid Body, see also: Prikl. Mat. Mekh., 2009, vol. 73, no. 2, pp. 189–203.MATHGoogle Scholar
  65. 55.
    Ishlinsky, A.Yu., Sokolov, B. N., and Chernousko, F. L., On Motion of Flat Bodies with Friction, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1981, no. 4, pp. 17–28 (Russian).Google Scholar
  66. 56.
    Kharlamov, P.V., A Critique of Some Mathematical Models of Mechanical Systems with Differential Constraints, J. Appl. Math. Mech., 1992, vol. 56, no. 4, pp. 584–594; see also: Prikl. Mat. Mekh., 1992, vol. 56, no. 4, pp. 683–692.MathSciNetCrossRefGoogle Scholar
  67. 57.
    Kozlov, V.V., On the Realization of Constraints in Dynamics, J. Appl. Math. Mech., 1992, vol. 56, no. 4, pp. 594–600; see also: Prikl. Mat. Mekh., 1992, vol. 56, no. 4, pp. 692–698.MathSciNetCrossRefGoogle Scholar
  68. 58.
    Kireenkov, A.A., On the Motion of a Homogeneous Rotating Disk along a Plane in the Case of Combined Friction, Mech. Solids, 2002, vol. 37, no. 1, pp. 47–53; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2002, no. 1, pp. 60–67.Google Scholar
  69. 59.
    Kudra, G. and Awrejcewicz, J., Application and Experimental Validation of New Computational Models of Friction Forces and Rolling Resistance, Acta Mech., 2015, vol. 226, no. 9, pp. 2831–2848.CrossRefGoogle Scholar
  70. 60.
    Salnikova, T. V., Treschev, D. V., and Gallyamov, S.R., On the Motion of Free Disc on the Rough Horizontal Plane, Nelin. Dinam., 2012, vol. 8, no. 1, pp. 83–101 (Russian).Google Scholar
  71. 61.
    Samsonov, V.A., On Friction in Sliding and Spinning of a Body, Vestn. Mosk. Univ., Ser. 1. Mat. Mekh., 1981, no. 2, pp. 76–78 (Russian).Google Scholar
  72. 62.
    Formalev, V. F. and Reviznikov, D. L., Numerical Methods, Moscow: Fizmatlit, 2004 (Russian).Google Scholar
  73. 63.
    Shiller, N. N., Note on the Equilibrium of a Rigid Body under the Action of Friction on a Part of Its Surface, Tr. otd. fiz. nauk, 1892, vol. 5, no. 1, pp. 17–19 (Russian).Google Scholar
  74. 64.
    Boussinesq, J., Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques, Paris: Gauthier-Villars, 1885.MATHGoogle Scholar
  75. 65.
    Contensou, P., Couplage entre frottement de pivotement et frottement de pivotement dans la théorie de latoupie, in Kreiselprobleme Gyrodynamics: IUTAM Symp. Celerina, Berlin: Springer, 1963. pp. 201–216.CrossRefGoogle Scholar
  76. 66.
    Farkas, Z., Bartels, G., Unger, T., and Wolf, D. E., Frictional Coupling between Sliding and Spinning Motion, Phys. Rev. Lett., 2003. vol. 90, no. 24, 248302, 4 pp.CrossRefGoogle Scholar
  77. 67.
    Goyal, S., Planar Sliding of a Rigid Body with Dry Friction: Limit Surfaces and Dynamics of Motion: PhD Thesis, Ithaca,N.Y., Cornell University, 1989.Google Scholar
  78. 68.
    Goyal, S., Ruina, A., and Papadopoulos, J., Planar Sliding with Dry Friction: Part 2. Dynamics of Motion, Wear, 1991, vol. 143, pp. 331–352.CrossRefGoogle Scholar
  79. 69.
    Shegelski, M.R.A. and Holenstein, R., Rapidly Rotating Sliding Cylinders: Trajectories with Large Lateral Displacements, Can. J. Phys., 2002, vol. 80, pp. 141–147.CrossRefGoogle Scholar
  80. 70.
    Zobova, A.A. and Treschev, D.V., Ball on a Viscoelastic Plane, Proc. Steklov Inst. Math., 2013, vol. 281, no. 1, pp. 91–118; see also: Tr. Mat. Inst. Steklova, 1954, vol. 5, no. 5, pp. 355–388.MATHCrossRefGoogle Scholar
  81. 71.
    Erismann, Th., Theorie und Anwendungen des echten Kugelgetriebes, Z. Angew. Math. Phys., 1954, vol. 5, no. 5, pp. 355–388.MathSciNetMATHCrossRefGoogle Scholar
  82. 72.
    Kireenkov, A. A., Semendyaev, S. V., and Filatov, V. F., Experimental Study of Coupled Two-Dimensional Models of Sliding and Spinning Friction, Mech. Solids, 2010, vol. 45, no. 6, pp. 921–930; see also: Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 2010, no. 6, pp. 192–202.CrossRefGoogle Scholar
  83. 73.
    Cross, R., The Rise and Fall of Spinning Tops, Amer. J. Phys., 2013, vol. 81, no. 4, pp. 280–289.CrossRefGoogle Scholar
  84. 74.
    Erdakova, N.N. and Ivanov, A.P., On a Mechanical Lens, arXiv:1509.01413 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Alexey V. Borisov
    • 1
    • 2
  • Yury L. Karavaev
    • 3
    • 4
  • Ivan S. Mamaev
    • 3
  • Nadezhda N. Erdakova
    • 3
  • Tatyana B. Ivanova
    • 1
    • 3
  • Valery V. Tarasov
    • 5
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  2. 2.National Research Nuclear University “MEPhI”MoscowRussia
  3. 3.Udmurt State UniversityIzhevskRussia
  4. 4.M. T. Kalashnikov Izhevsk State Technical UniversityIzhevskRussia
  5. 5.Institute of Mechanics UB RASIzhevskRussia

Personalised recommendations