Advertisement

Regular and Chaotic Dynamics

, Volume 20, Issue 4, pp 449–462 | Cite as

Conservation of energy and momenta in nonholonomic systems with affine constraints

  • Francesco FassòEmail author
  • Nicola Sansonetto
Article

Abstract

We characterize the conditions for the conservation of the energy and of the components of the momentum maps of lifted actions, and of their “gauge-like” generalizations, in time-independent nonholonomic mechanical systems with affine constraints. These conditions involve geometrical and mechanical properties of the system, and are codified in the so-called reaction-annihilator distribution.

Keywords

nonholonomic mechanical systems conservation of energy reaction-annihilator distribution gauge momenta nonholonomic Noether theorem 

MSC2010 numbers

70F25 37J60 37J15 70E18 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, R. and Marsden, J.E., Foundations of Mechanics, 2nd ed., rev. and enl., Reading, Mass.: Benjamin/Cummings, 1978.zbMATHGoogle Scholar
  2. 2.
    Agostinelli, C., Nuova forma sintetica delle equazioni del moto di un sistema anolonomo ed esistenza di un integrale lineare nelle velocita lagrangiane, Boll. Un. Mat. Ital. (3), 1956, vol. 11, pp. 1–9.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Arnol’d, V. I., Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math., vol. 60, New York: Springer, 1989.CrossRefzbMATHGoogle Scholar
  4. 4.
    Bates, L., Graumann, H., and MacDonnell, C., Examples of Gauge Conservation Laws in Nonholonomic Systems, Rep. Math. Phys., 1996, vol. 37, no. 3, pp. 295–308.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bates, L. M. and Nester, J. M., On D’Alembert’s Principle, Commun. Math., 2011, vol. 19, no. 1, pp. 57–72.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bates, L. and Śniatycki, J., Nonholonomic Reduction, Rep. Math. Phys., 1993, vol. 32, no. 1, pp. 99–115.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Benenti, S., A “user-friendly” Approach to the Dynamical Equations of Non-Holonomic Systems, SIGMA Symmetry Integrability Geom. Methods Appl., 2007, vol. 3, Paper 036, 33 pp.Google Scholar
  8. 8.
    Bloch, A. M., Krishnaprasad, P. S., Marsden, J.E., and Murray, R. M., Nonholonomic Mechanical Systems with Symmetry, Arch. Rational Mech. Anal., 1996, vol. 136, no. 1, pp. 21–99.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Jacobi Integral in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 383–400.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Borisov, A. V., Mamaev, I. S., and Kilin, A.A., Rolling of a Ball on a Surface: New Integrals and Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 201–219.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Borisov, A.V. and Mamaev, I. S., Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems, Regul. Chaotic Dyn., 2008, vol. 13, no. 5, pp. 443–490.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cantrijn, F., de León, M., Marrero, J.C., and de Diego, D. M., Reduction of Nonholonomic Mechanical Systems with Symmetries, Rep. Math. Phys., 1998, vol. 42, nos. 1–2, pp. 25–45.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cortés Monforte, J., Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Math., vol. 1793, Berlin: Springer, 2002.CrossRefzbMATHGoogle Scholar
  14. 14.
    Crampin, M. and Mestdag, T., The Cartan Form for Constrained Lagrangian Systems and the Nonholonomic Noether Theorem, Int. J. Geom. Methods Mod. Phys., 2011, vol. 8, no. 4, pp. 897–923.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cushman, R., Duistermaat, H., and Śniatycki, J., Geometry of Nonholonomically Constrained Systems, Adv. Ser. Nonlinear Dynam., vol. 26, Hackensack,N.J.: World Sci., 2010.zbMATHGoogle Scholar
  16. 16.
    Fassò, F., Giacobbe, A., and Sansonetto, N., Gauge Conservation Laws and the Momentum Equation in Nonholonomic Mechanics, Rep. Math. Phys., 2008, vol. 62, no. 3, pp. 345–367.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fassò, F., Giacobbe, A., and Sansonetto, N., On the Number of Weakly Noetherian Constants of Motion of Nonholonomic Systems, J. Geom. Mech., 2009, vol. 1, no. 4, pp. 389–416.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fassò, F., Giacobbe, A., and Sansonetto, N., Linear Weakly Noetherian Constants of Motion Are Horizontal Gauge Momenta, J. Geom. Mech., 2012, vol. 4, no. 2, pp. 129–136.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fassò, F., Ramos, A., and Sansonetto, N., The Reaction-Annihilator Distribution and the Nonholonomic Noether Theorem for Lifted Actions, Regul. Chaotic Dyn., 2007, vol. 12, no. 6, pp. 579–588.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fassò, F. and Sansonetto, N., An Elemental Overview of the Nonholonomic Noether Theorem, Int. J. Geom. Methods Mod. Phys., 2009, vol. 6, no. 8, pp. 1343–1355.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fassò, F. and Sansonetto, N., Conservation of “Moving” Energy in Nonholonomic Systems with Affine Constraints and Integrability of Spheres on Rotating Surfaces: Preprint, http://arxiv.org/abs/1503.06661 (2015).Google Scholar
  22. 22.
    Gorni, G. and Zampieri, G., Time Reversibility and Energy Conservation for Lagrangian Systems with Nonlinear Nonholonomic Constraints, Rep. Math. Phys., 2000, vol. 45, no. 2, pp. 217–227.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Jotz, M. and Ratiu, T. S., Dirac Structures, Nonholonomic Systems and Reduction, Rep. Math. Phys., 2012, vol. 69, no. 1, pp. 5–56.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kobayashi, M.H. and Oliva, W. O., A Note on the Conservation of Energy and Volume in the Setting of Nonholonomic Mechanical Systems, Qual. Theory Dyn. Syst., 2004, vol. 4, no. 2, pp. 383–411.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Marle, Ch.-M., Reduction of Constrained Mechanical Systems and Stability of Relative Equilibria, Comm. Math. Phys., 1995, vol. 174, no. 2, pp. 295–318.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Marle, Ch.-M., On Symmetries and Constants of Motion in Hamiltonian Systems with Nonholonomic Constraints, in Classical and Quantum Integrability (Warsaw, 2001), Banach Center Publ., vol. 59, Warsaw: Polish Acad. Sci., 2003, pp. 223–242.CrossRefGoogle Scholar
  27. 27.
    Massa, E. and Pagani, E., Classical Dynamics of Nonholonomic Systems: A Geometric Approach, Ann. Inst. H. Poincaré Phys. Theor., 1991, vol. 55, no. 1, pp. 511–544.MathSciNetzbMATHGoogle Scholar
  28. 28.
    Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence,R.I.: AMS, 1972.zbMATHGoogle Scholar
  29. 29.
    Pars, L.A., A Treatise on Analytical Dynamics, London: Heinemanin, 1968.Google Scholar
  30. 30.
    Routh, E. J., The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies: Being Part II of a Treatise on the Whole Subject, 6th ed., New York: Dover, 1955.Google Scholar
  31. 31.
    Śniatycki, J., Nonholonomic Noether Theorem and Reduction of Symmetries, Rep. Math. Phys., 1998, vol. 42, nos. 1–2, pp. 5–23.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Terra, G. and Kobayashi, M. H., On Classical Mechanical Systems with Non-Linear Constraints, J. Geom. Phys., 2004, vol. 49, nos. 3–4, pp. 385–417.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di PadovaPadovaItaly

Personalised recommendations