Regular and Chaotic Dynamics

, Volume 20, Issue 2, pp 134–152 | Cite as

The dynamics and control of a spherical robot with an internal omniwheel platform

Article

Abstract

This paper deals with the problem of a spherical robot propelled by an internal omniwheel platform and rolling without slipping on a plane. The problem of control of spherical robot motion along an arbitrary trajectory is solved within the framework of a kinematic model and a dynamic model. A number of particular cases of motion are identified, and their stability is investigated. An algorithm for constructing elementary maneuvers (gaits) providing the transition from one steady-state motion to another is presented for the dynamic model. A number of experiments have been carried out confirming the adequacy of the proposed kinematic model.

Keywords

spherical robot kinematic model dynamic model nonholonomic constraint omniwheel 

MSC2010 numbers

93B18 93B52 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kilin, A.A., The Dynamics of Chaplygin Ball: The Qualitative and Computer Analysis, Regul. Chaotic Dyn., 2001, vol. 6, no. 3, pp. 291–306.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Borisov, A. V., Mamaev, I. S., and Kilin, A.A., The Rolling Motion of a Ball on a Surface: New Integrals and Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 201–219.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Chase, R. and Pandya, A., A Review of Active Mechanical Driving Principles of Spherical Robots, Robotics, 2012, vol. 1, no. 1, pp. 3–23.CrossRefGoogle Scholar
  4. 4.
    Crossley, V.A., A Literature Review on the Design of Spherical Rolling Robots, Pittsburgh, Pa., 2006.Google Scholar
  5. 5.
    Ylikorpi, T. and Suomela, J., Ball-Shaped Robots, in Climbing and Walking Robots: Towards New Applications, H. Zhang (Ed.), Vienna: InTech, 2007.Google Scholar
  6. 6.
    Mobile Robots: Ball-Shaped Robot and Wheel Robot, A. V. Borisov, I. S. Mamaev, Yu. L. Karavaev (Eds.), Izhevsk: R&C Dynamics, Institute of Computer Science, 2013 (Russian).Google Scholar
  7. 7.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., An Omni-Wheel Vehicle on a Plane and a Sphere, Rus. J. Nonlin. Dyn., 2011, vol. 7, no. 4, pp. 785–801 (Russian).Google Scholar
  8. 8.
    Chen, W.-H., Chen, Ch.-P., Yu, W.-Sh., Lin, Ch.-H., and Lin, P.-Ch., Design and Implementation of an Omnidirectional Spherical Robot Omnicron, in IEEE/ASME Internat. Conf. on Advanced Intelligent Mechatronics (Kachsiung, Taiwan, 2012), pp. 719–724.Google Scholar
  9. 9.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How To Control Chaplygin’s Sphere Using Rotors, Regul. Chaotic Dyn., 2012, vol. 17, nos. 3–4, pp. 258–272.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How To Control Chaplygin’s Sphere Using Rotors: 2, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 144–158.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Svinin, M., Morinaga, A., and Yamamoto, M., On the Dynamic Model and Motion Planning for a Spherical Rolling Robot Actuated by Orthogonal Internal Rotors, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 126–143.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Morinaga, A., Svinin, M., and Yamamoto, M., A Motion Planning Strategy for a Spherical Rolling Robot Driven by Two Internal Rotors, IEEE Trans. on Robotics, 2014, vol. 30, no. 4, pp. 993–1002.CrossRefGoogle Scholar
  13. 13.
    Svinin, M., Morinaga, A., and Yamamoto, M., On the Dynamic Model and Motion Planning for a Class of Spherical Rolling Robots, in Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA, 14–18 May, 2012), pp. 3226–3231.Google Scholar
  14. 14.
    Kazakov, A. O., Strange Attractors and Mixed Dynamics in the Problem of an Unbalanced Rubber Ball Rolling on a Plane, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 508–520.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Ivanova, T. B. and Pivovarova, E. N., Dynamics and Control of a Spherical Robot with an Axisymmetric Pendulum Actuator, Rus. J. Nonlin. Dyn., 2013, vol. 9, no. 3, pp. 507–520 (Russian).Google Scholar
  16. 16.
    Koshiyama, A. and Yamafuji, K., Design and Control of an All-Direction Steering Type Mobile Robot, Int. J. Robot. Res., 1993, vol. 12, no. 5, pp. 411–419.CrossRefGoogle Scholar
  17. 17.
    Balandin, D. V., Komarov, M.A., and Osipov, G. V., A Motion Control for a Spherical Robot with Pendulum Drive, J. Comput. Sys. Sc. Int., 2013, vol. 52, no. 4, pp. 650–663; see also: Izv. Ross. Akad. Nauk. Teor. Sist. Upr., 2013, no. 4, pp. 150–163.CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Kayacan, E., Bayraktaroglu, Z. Y., and Saeys, W., Modeling and Control of a Spherical Rolling Robot: A Decoupled Dynamics Approach, Robotica, 2012, vol. 30, no. 12, pp. 671–680.CrossRefGoogle Scholar
  19. 19.
    Yoon, J.-C., Ahn, S.-S., and Lee, Y.-J., Spherical Robot with New Type of Two-Pendulum Driving Mechanism, in Proc. 15th IEEE Internat. Conf. on Intelligent Engineering Systems (INES) (Poprad, High Tatras, Slovakia, 2011), pp. 275–279.Google Scholar
  20. 20.
    Zhao, B., Li, M., Yu, H., Hu, H., and Sun, L., Dynamics and Motion Control of a Two Pendulums Driven Spherical Robot, in Proc. of the 2010 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems (IROS) (Taipei, Taiwan, October 2010), pp. 147–153.Google Scholar
  21. 21.
    Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Rolling of a Ball without Spinning on a Plane: The Absence of an Invariant Measure in a System with a Complete Set of Integrals, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 571–579.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Borisov, A. V., Fedorov, Yu. N., and Mamaev, I. S., Chaplygin Ball over a Fixed Sphere: An Explicit Integration, Regul. Chaotic Dyn., 2008, vol. 13, no. 6, pp. 557–571.CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Borisov, A. V. and Mamaev, I. S., Rolling of a Non-Homogeneous Ball over a Sphere without Slipping and Twisting, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 153–159.CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Borisov, A.V. and Mamaev, I. S., Isomorphism and Hamilton Representation of Some Nonholonomic Systems, Siberian Math. J., 2007, vol. 48, no. 1, pp. 26–36; see also: Sibirsk. Mat. Zh., 2007, vol. 48, no. 1, pp. 33–45.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Ahn, S.-S. and Lee, Y.-J., Novel Spherical Robot with Hybrid Pendulum Driving Mechanism, Adv. Mech. Eng., 2014, vol. 2014, 456727, 14 pp.Google Scholar
  26. 26.
    Forbes, J.R., Barfoot, T. D., and Damaren, Ch. J., Dynamic Modeling and Stability Analysis of a Power-Generating Tumbleweed Rover, Multibody Syst. Dyn., 2010, vol. 24, no. 4, pp. 413–439.CrossRefMATHGoogle Scholar
  27. 27.
    Hartl, A.E. and Mazzoleni, A.P., Dynamic Modeling of a Wind-Driven Tumbleweed Rover Including Atmospheric Effects, J. of Spacecraft and Rockets, 2010, vol. 47, no. 3, pp. 493–502.CrossRefGoogle Scholar
  28. 28.
    Hartl, A. E. and Mazzoleni, A.P., Parametric Study of Spherical Rovers Crossing a Valley, J. Guid. Control Dynam., 2008, vol. 31, no. 3, pp. 775–779.CrossRefGoogle Scholar
  29. 29.
    Hogan, F.R. and Forbes, J.R., Modeling of Spherical Robots Rolling on Generic Surfaces, Multibody Syst. Dyn., 2014, 19 pp.Google Scholar
  30. 30.
    Hogan, F.R., Forbes, J.R., and Barfoot, T.D., Rolling Stability of a Power-Generating Tumbleweed Rover, J. of Spacecraft and Rockets, 2014, vol. 51, no. 6, pp. 1895–1906.CrossRefGoogle Scholar
  31. 31.
    Lee, J. and Park, W., Design and Path Planning for a Spherical Rolling Robot, in ASME Internat. Mechanical Engineering Congress and Exposition (San Diego, Calif., Nov. 15–21, 2013): Vol. 4A. Dynamics, Vibration and Control, IMECE2013-64994, 8 pp.Google Scholar
  32. 32.
    Yu, T., Sun, H., Jia, Q., Zhang, Y., and Zhao, W., Stabilization and Control of a Spherical Robot on an Inclined Plane, Res. J. Appl. Sci. Eng. Technology, 2013, vol. 5, no. 6, pp. 2289–2296.Google Scholar
  33. 33.
    Kilin, A.A. and Karavaev, Yu. L., The Kinematic Control Model for a Spherical Robot with an Unbalanced Internal Omniwheel Platform, Rus. J. Nonlin. Dyn., 2014, vol. 10, no. 4, pp. 497–511 (Russian).Google Scholar
  34. 34.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Generalized Chaplygin’s Transformation and Explicit Integration of a System with a Spherical Support, Regul. Chaotic Dyn., 2012, vol. 17, no. 2, pp. 170–190.CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Rolling of a Homogeneous Ball over a Dynamically Asymmetric Sphere, Regul. Chaotic Dyn., 2011, vol. 16, no. 5, pp. 465–483.CrossRefMathSciNetGoogle Scholar
  36. 36.
    Borisov, A.V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).Google Scholar
  37. 37.
    Kilin, A.A., Karavaev, Yu. L., and Klekovkin, A. V., Kinematic Control of a High Manoeuvrable Mobile Spherical Robot with Internal Omni-Wheeled Platform, Rus. J. Nonlin. Dyn., 2014, vol. 10, no. 1, pp. 113–126 (Russian).Google Scholar
  38. 38.
    Borisov, A. V. and Mamaev, I. S., Rolling of a Non-Homogeneous Ball over a Sphere without Slipping and Twisting, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 153–159.CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 8, no. 3, pp. 277–328; see also: Rus. J. Nonlin. Dyn., 2013, vol. 9, no. 2, pp. 141–202.CrossRefMathSciNetGoogle Scholar
  40. 40.
    Bolsinov, A.V., Borisov, A. V., and Mamaev, I. S., Rolling of a Ball without Spinning on a Plane: The Absence of an Invariant Measure in a System with a Complete Set of Integrals, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 571–579; see also: Rus. J. Nonlin. Dyn., 2012, vol. 8, no. 3, pp. 605–616.CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Koiller, J. and Ehlers, K. M., Rubber Rolling over a Sphere, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 127–152.CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Borisov, A.V., Kazakov, A.O., and Sataev, I.R., The Reversal and Chaotic Attractor in the Nonholonomic Model of Chaplygin’s Top, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 718–733.CrossRefMathSciNetGoogle Scholar
  43. 43.
    Borisov, A.V., Kazakov, A.O., and Kuznetsov, S.P., Nonlinear Dynamics of the Rattleback: A Nonholonomic Model, Physics-Uspekhi, 2014, vol. 57, no. 5, pp. 453–460; see also: Uspekhi Fiz. Nauk, 2014, vol. 184, no. 5, pp. 493–500.CrossRefGoogle Scholar
  44. 44.
    Borisov, A.V. and Mamaev, I. S., Strange Attractors in Rattleback Dynamics, Physics-Uspekhi, 2003, vol. 46, no. 4, pp. 393–403; see also: Uspekhi Fiz. Nauk, 2003, vol. 173, no. 4, pp. 407–418.CrossRefMathSciNetGoogle Scholar
  45. 45.
    Borisov, A. V., Kilin, A.A., Mamaev, I. S., New Effects in Dynamics of Rattlebacks, Dokl. Phys., 2006, vol. 51, no. 5, pp. 272–275; see also: Dokl. Akad. Nauk, 2006, vol. 408, no. 2, pp. 192–195.CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Vetchanin, E. V., Mamaev, I. S., and Tenenev, V. A., The Self-Propulsion of a Body with Moving Internal Masses in a Viscous Fluid, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 100–117.CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Bolotin, S. V. and Popova, T. V., On the Motion of a Mechanical System inside a Rolling Ball, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 159–165.CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Rutstam, N., High Frequency Behavior of a Rolling Ball and Simplification of the Separation Equation, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 226–236.CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Borisov, A. V. and Mamaev, I. S., Topological Analysis of an Integrable System Related to the Rolling of a Ball on a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 4, pp. 356–371.CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Borisov, A. V. and Mamaev, I. S., The Dynamics of the Chaplygin Ball with a Fluid-Filled Cavity, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 490–496.CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Gonchenko, A. S., Gonchenko, S.V., and Kazakov, A.O., Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 521–538.CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., The Problem of Drift and Recurrence for the Rolling Chaplygin Ball, Regul. Chaotic Dyn., 2013, vol. 18, no. 6, pp. 832–859.CrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Takano, H., Spin Reversal of a Rattleback with Viscous Friction, Regul. Chaotic Dyn., 2014, vol. 19, no. 1, pp. 81–99.CrossRefMathSciNetGoogle Scholar
  54. 54.
    Mamaev, I. S. and Ivanova, T. B., The Dynamics of a Rigid Body with a Sharp Edge in Contact with an Inclined Surface in the Presence of Dry Friction, Regul. Chaotic Dyn., 2014, vol. 19, no. 1, pp. 116–139.CrossRefMathSciNetGoogle Scholar
  55. 55.
    Ivanova, T. B. and Pivovarova, E. N., Comments on the Paper by A. V. Borisov, A. A. Kilin, I. S. Mamaev “How To Control the Chaplygin Ball Using Rotors: 2”, Regul. Chaotic Dyn., 2014, vol. 19, no. 1, pp. 140–143.CrossRefMathSciNetGoogle Scholar
  56. 56.
    Bizyaev, I.A., Borisov, A.V., and Mamaev, I. S., The Dynamics of Nonholonomic Systems Consisting of a Spherical Shell with a Moving Rigid Body Inside, Regul. Chaotic Dyn., 2014, vol. 19, no. 2, pp. 198–213.CrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    Burlakov, D. and Treschev, D., A Rigid Body on a Surface with Random Roughness, Regul. Chaotic Dyn., 2014, vol. 18, no. 3, pp. 296–309.CrossRefMathSciNetGoogle Scholar
  58. 58.
    Borisov, A.V., Erdakova, N.N., Ivanova, T.B., and Mamaev, I. S., The Dynamics of a Body with an Axisymmetric Base Sliding on a Rough Plane, Regul. Chaotic Dyn., 2014, vol. 19, no. 6, pp. 607–634.CrossRefMathSciNetGoogle Scholar
  59. 59.
    Borisov, A. V., Mamaev, I. S., and Kilin, A.A., Stability of Steady Rotations in the Nonholonomic Routh Problem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 239–249.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.M. T. Kalashnikov Izhevsk State Technical UniversityIzhevskRussia
  2. 2.Udmurt State UniversityIzhevskRussia

Personalised recommendations