Advertisement

Regular and Chaotic Dynamics

, Volume 20, Issue 1, pp 74–93 | Cite as

Simultaneous separation for the Neumann and Chaplygin systems

  • Andrey V. TsiganovEmail author
Article

Abstract

The Neumann and Chaplygin systems on the sphere are simultaneously separable in variables obtained from the standard elliptic coordinates by the proper Bäcklund transformation. We also prove that after similar Bäcklund transformations other curvilinear coordinates on the sphere and on the plane become variables of separation for the system with quartic potential, for the Hénon-Heiles system and for the Kowalevski top. This allows us to speak about some analog of the hetero Bäcklund transformations relating different Hamilton-Jacobi equations.

Keywords

bi-Hamiltonian geometry Bäcklund transformations separation of variables 

MSC2010 numbers

37K35 53D22 70H06 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, M. R., Harnad, J., and Previato, E., Isospectal Hamiltonian Flows in Finite and Infinite Dimensions, Commun. Math. Phys., 1988, vol. 117, no. 3, pp. 451–500.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Adams, M. R., Harnad, J., and Hurtubise, J., Darboux Coordinates and Liouville-Arnold Integration in Loop Algebras, Commun. Math. Phys., 1993, vol. 155, no. 2, pp. 385–413.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Babelon, O. and Talon, M., Separation of Variables for the Classical and Quantum Neumann Model, Nucl. Phys. B., 1992, vol. 379, nos. 1–2, pp. 321–339.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bartocci, C., Falqui, G., and Pedroni, M., A Geometric Approach to the Separability of the Neumann — Rosochatius System, Differential Geom. Appl., 2004, vol 21, no. 3, pp. 349–360.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bellon, M.P. and Talon, M., Spectrum of the Quantum Neumann Model, Phys. Lett. A, 2005, vol. 337, nos. 4–6, pp. 360–368.CrossRefzbMATHGoogle Scholar
  6. 6.
    Bobenko, A. I. and Suris, Yu. B., Discrete Differential Geometry: Integrable Structure, Grad. Stud. Math., vol. 98, Providence, R.I.: AMS, 2008.CrossRefGoogle Scholar
  7. 7.
    Boll, R., Petrera, M., and Suris, Yu. B., Multi-Time Lagrangian 1-Forms for Families of Bäcklund Transformations: Toda-Type Systems, J. Phys. A, 2013, vol. 46, no. 27, 275204, 26 pp.Google Scholar
  8. 8.
    Bolsinov, A.V. and Borisov, A.V., Compatible Poisson Brackets on Lie Algebra, Math. Notes, 2002, vol. 72, nos. 1–2, pp. 10–30; see also: Mat. Zametki, 2002, vol. 72, no. 1, pp. 11–34.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Multiparticle Systems. The Algebra of Integrals and Integrable Case, Regul. Chaotic Dyn., 2009, vol. 14, no. 1, pp. 18–41.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Chaplygin, S.A., A New Particular Solution of the Problem of the Motion of a Rigid Body in a Liquid, Trudy Otdel. Fiz. Nauk Obsh. Liub. Est., 1903, vol. 11, no. 2, pp. 7–10 (Russian).Google Scholar
  11. 11.
    Dullin, H.R., Richter, P. H., Veselov, A.P., and Waalkens, H., Actions of the Neumann Systems via Picard — Fuchs Equations, Phys. D, 2001, vol. 155, nos. 3–4, pp. 159–183.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Fordy, A.P., The Hénon-Heiles System Revisited, Phys. D, 1991, vol. 52, nos. 2–3, pp. 204–210.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Grigoryev, Yu.A. and Tsiganov, A.V., Separation of Variables for the Generalized Hénon-Heiles System and System with Quartic Potential, J. Phys. A, 2011, vol. 44, no. 25, 255202, 9 pp.Google Scholar
  14. 14.
    Grigoryev, Yu.A., Khudobakhshov, V.A., and Tsiganov, A.V., Separation of Variables for Some Systems with a Fourth-Order Integral of Motion, Theoret. and Math. Phys., 2013, vol. 177, no. 3, pp. 1680–1692; see also: Teoret. Mat. Fiz., 2013, vol. 177, no. 3, pp. 468–481.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Guillemin, V. and Sternberg, Sh., Symplectic Techniques in Physics, Cambridge: Cambridge Univ. Press, 1984.zbMATHGoogle Scholar
  16. 16.
    Gurarie, D., Quantized Neumann Problem, Separable Potentials on S n and the Lamé Equation, J. Math. Phys., 1995, vol. 36, no. 10, pp. 5355–5391.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Jacobi, C.G. J., Vorlesungen über Dynamik, 2nd ed., Berlin: Reimer, 1884.Google Scholar
  18. 18.
    Tsiganov, A.V. and Khudobakhshov, V.A., Integrable Systems on the Sphere Associated with Genus Three Algebraic Curves, Regul. Chaotic Dyn., 2011, vol. 16, nos. 3–4, pp. 396–414.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kuznetsov, V. B., Simultaneous Separation for the Kowalevski and Goryachev -Chaplygin Gyrostats, J. Phys. A, 2002, vol. 35, no. 30, pp. 6419–6430.CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Kuznetsov, V. and Vanhaecke, P., Bäcklund Transformations for Finite-Dimensional Integrable Systems: A Geometric Approach, J. Geom. Phys., 2002, vol. 44, no. 1, pp. 1–40.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Lichnerowicz, A., Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry, 1977, vol. 12, no. 2, pp. 253–300.zbMATHMathSciNetGoogle Scholar
  22. 22.
    Li, Y.Ch. and Yurov, A., Lie — Bäcklund-Darboux Transformations, Surveys of Modern Mathematics, vol. 8, Somerville, Mass.: Internat. Press, 2014zbMATHGoogle Scholar
  23. 23.
    Magri, F., Eight Lectures on Integrable Systems, Lecture Notes in Phys., vol. 495, Berlin: Springer, 1997, pp. 256–296.Google Scholar
  24. 24.
    Mumford, D., Tata Lectures on Theta: 2. Jacobian Theta Functions and Differential Equations, Progr. Math., vol. 43, Boston,Mass.: Birkhäuser, 1984.Google Scholar
  25. 25.
    Moser, J., Geometry of Quadrics and Spectral Theory, in The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), New York: Springer, 1980, pp. 147–188.CrossRefGoogle Scholar
  26. 26.
    Moser, J., Various Aspects of Integrable Hamiltonian Systems, in Dynamical Systems (C.I.M.E. Summer School, Bressanone, 1978), Progr. Math., vol. 8, Boston,Mass.: Birkhäuser, 1980, pp. 233–289.Google Scholar
  27. 27.
    Neumann, C., De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur, J. Reine Angew. Math., 1859, vol. 56, pp. 46–63.CrossRefzbMATHGoogle Scholar
  28. 28.
    Ravoson, V., Gavrilov, L., and Caboz, R., Separability and Lax Pairs for Hénon-Heiles System, J. Math. Phys., 1993, vol. 34, no. 6, pp. 2385–2393.CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Rogers, C. and Schief, W.K., Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge Texts Appl. Math., Cambridge: Cambridge Univ. Press, 2002.CrossRefGoogle Scholar
  30. 30.
    Romeiras, F. J., Separability and Lax Pairs for the Two-Dimensional Hamiltonian System with a Quartic Potential, J. Math. Phys., 1995, vol. 36, no. 7, pp. 3559–3565.CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Rosochatius, E., Über die Bewegung eines Punktes, Inaugural Dissertation, Univ. Göttingen, 1877.Google Scholar
  32. 32.
    Sklyanin, E.K., Separation of Variables: New Trends, Progr. Theoret. Phys. Suppl., 1995, vol. 118, pp. 35–60.CrossRefMathSciNetGoogle Scholar
  33. 33.
    Tempesta, P. and Tondo, G., Generalized Lenard Chains, Separation of Variables, and Superintegrability, Phys. Rev. E, 2012, vol. 85, no. 4, 046602, 11 pp.CrossRefGoogle Scholar
  34. 34.
    Tsiganov, A.V., On the Steklov — Lyapunov Case of the Rigid Body Motion, Regul. Chaotic Dyn., 2004, vol. 9, no. 2, pp. 77–91.CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Tsiganov, A.V., Toda Chains in the Jacobi Method, Theoret. and Math. Phys., 2004, vol. 139, no. 2, pp. 636–653; see also: Teoret. Mat. Fiz., 2004, vol. 139, no. 2, pp. 225–244.CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Tsiganov, A.V., On the Generalized Chaplygin System, J. Math. Sci. (N. Y.), 2010, vol. 168, no. 6, pp. 901–911; see also: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI), 2010, vol. 374, pp. 21, 250–267, 272.CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Tsiganov, A.V., New Variables of Separation for Particular Case of the Kowalevski Top, Regul. Chaotic Dyn., 2010, vol. 15, no. 6, pp. 657–667.CrossRefMathSciNetGoogle Scholar
  38. 38.
    Tsiganov, A.V., On Bi-Integrable Natural Hamiltonian Systems on Riemannian Manifolds, J. Nonlinear Math. Phys., 2011, vol. 18, no. 2, pp. 245–268.CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Tsiganov, A.V., On Natural Poisson Bivectors on the Sphere, J. Phys. A, 2011, vol. 44, no. 10, 105203, 21 pp.Google Scholar
  40. 40.
    Tsiganov, A.V., New Variables of Separation for the Steklov — Lyapunov System, SIGMA Symmetry Integrability Geom. Methods Appl., 2012, vol. 8, Paper 012, 14 pp.Google Scholar
  41. 41.
    Turiel, F.-J., Structures bihamiltoniennes sur le fibré cotangent, C. R. Acad. Sci. Paris Sér. 1 Math., 1992, vol. 315, no. 10, pp. 1085–1088.zbMATHMathSciNetGoogle Scholar
  42. 42.
    Wojciechowski, S., The Analogue of the Bäcklund Transformation for Integrable Many-Body Systems, J. Phys. A, 1982, vol. 15, no. 12, L653–L657.CrossRefMathSciNetGoogle Scholar
  43. 43.
    Wojciechowski, S., Integrable One-Particle Potentials Related to the Neumann System and the Jacobi Problem of Geodesic Motion on an Ellipsoid, Phys. Lett. A, 1985, vol. 107, no. 3, pp. 106–111.CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Zullo, F., Bäcklund Transformations and Hamiltonian Flows, J. Phys. A, 2013, vol. 46, no. 14, 145203, 16 pp.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations