Advertisement

Regular and Chaotic Dynamics

, Volume 20, Issue 1, pp 19–36 | Cite as

Kustaanheimo — Stiefel regularization and the quadrupolar conjugacy

  • Lei ZhaoEmail author
Article

Abstract

In this article, we first present the Kustaanheimo — Stiefel regularization of the spatial Kepler problem in a symplectic and quaternionic approach. We then establish a set of action-angle coordinates, the so-called LCF coordinates, of the Kustaanheimo — Stiefel regularized Kepler problem, which is consequently used to obtain a conjugacy relation between the integrable approximating “quadrupolar” system of the lunar spatial three-body problem and its regularized counterpart. This result justifies the study of Lidov and Ziglin [14] of the quadrupolar dynamics of the lunar spatial three-body problem near degenerate inner ellipses.

Keywords

Kustaanheimo — Stiefel regularization quaternions symplectic reduction secular systems quadrupolar system 

MSC2010 numbers

70F07 70F16 37J15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albouy, A., Lectures on the Two-Body Problem, in Classical and Celestial Mechanics: The Recife Lectures, H. Cabral, F. Diacu (Eds.), Princeton: Princeton Univ. Press, 2002, pp. 63–116.Google Scholar
  2. 2.
    Chenciner, A., Le problème de la lune et la théorie des systèmes dynamiques: Notes de la première partie d’un cours donné à Paris 7 en 1985/1986.Google Scholar
  3. 3.
    Farago, F. and Laskar, J., High-Inclination Orbits in the Secular Quadrupolar Three-Body Problem, MNRAS, 2010, vol. 401, no. 2, pp. 1189–1198.CrossRefGoogle Scholar
  4. 4.
    Féjoz, J., Dynamique séculaire globale du problème plan des trois corps et application à l’existence de mouvements quasipériodiques, PhD thesis, Université Paris 13, 1999.Google Scholar
  5. 5.
    Féjoz, J., Averaging the Planar Three-Body Problem in the Neighborhood of Double Inner Collisions, J. Differential Equations, 2001, vol. 175, no. 1, pp. 175–187.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Féjoz, J., Quasiperiodic Motions in the Planar Three-Body Problem, J. Differential Equations, 2002, vol. 183, no. 2, pp. 303–341.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Ferrer, S. and Osácar, C., Harrington’s Hamiltonian in the Stellar Problem of Three Bodies: Reductions, Relative Equilibria and Bifurcations, Celestial Mech. Dynam. Astronom., 1994, vol. 58, no. 3, pp. 245–275.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Goursat, E., Les transformations isogonales en mécanique, C. R. Math. Acad. Sci. Paris, 1887, vol. 108, pp. 446–450.Google Scholar
  9. 9.
    Harrington, R. S., Dynamical Evolution of Triple Stars, Astronom. J., 1968, vol. 73, pp. 190–194.CrossRefGoogle Scholar
  10. 10.
    Kummer, M., On the Regularization of the Kepler Problem, Comm. Math. Phys., 1982, vol. 84, no. 1, pp. 133–152.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kustaanheimo, P. and Stiefel, E., Perturbation Theory of Kepler Motion Based on Spinor Regularization, J. Reine Angew. Math., 1965, vol. 218, pp. 204–219.zbMATHMathSciNetGoogle Scholar
  12. 12.
    Kustaanheimo, P., Spinor Regularization of the Kepler Motion, Ann. Univ. Turku. Ser. A, 1964, vol. 73, 7 pp.Google Scholar
  13. 13.
    Levi-Civita, T., Nuovo sistema canonico di elementi ellittici, Ann. Mat. Pura Appl., 1913, vol. 20, no. 1, pp. 153–169.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Lidov, M. and Ziglin, S., Non-Restricted Double-Averaged Three Body Problem in Hill’s Case, Celestial Mech. Dynam. Astronom., 1976, vol. 13, no. 4, pp. 471–489.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Mikkola, S., A Comparison of Regularization Methods for Few-Body Interactions, http://www.ipam.ucla.edu/publications/pcaws2/pcaws2 5522.pdf (slides of a talk at UCLA).
  16. 16.
    Moser, J., Regularization of Kepler’s Problem and the Averaging Method on a Manifold, Comm. Pure Appl. Math., 1970, vol. 23, pp. 609–636.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Palacián, J., Sayas, F., and Yanguas, P., Regular and Singular Reductions in the Spatial Three-Body Problem, Qual. Theory Dyn. Syst., 2013, vol. 12, no. 1, pp. 1–40.CrossRefMathSciNetGoogle Scholar
  18. 18.
    Saha, P., Interpreting the Kustaanheimo — Stiefel Transform in Gravitational Dynamics, MNRAS, 2009, vol. 400, no. 1, pp. 228–231.CrossRefGoogle Scholar
  19. 19.
    Stiefel, E. and Scheifele, G., Linear and Regular Celestial Mechanics: Perturbed Two-Body Motion, Numerical Methods, Canonical Theory, Grundlehren Math. Wiss., vol. 174, Berlin: Springer, 1971.CrossRefGoogle Scholar
  20. 20.
    Sudbery, A., Quaternionic Analysis, Math. Proc. Cambridge Philos. Soc., 1979, vol. 85, no. 2, pp. 199–224.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Waldvogel, J., Quaternions for Regularizing Celestial Mechanics: The Right Way, Celestial Mech. Dynam. Astronom., 2008, vol. 102, nos. 1–3, pp. 149–162.CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Zhao, L., Solutions quasi-périodiques et solutions de quasi-collision du problème spatial des trois corps, PhD thesis, Université Paris-Diderot, 2013.Google Scholar
  23. 23.
    Zhao, L., Quasi-Periodic Almost-Collision Orbits in the Spatial Three-Body Problem, Comm. Pure Appl. Math. (in press). doi 10.1002/cpa.21539Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations