Advertisement

Regular and Chaotic Dynamics

, Volume 19, Issue 6, pp 663–680 | Cite as

Continuation of the exponentially small transversality for the splitting of separatrices to a whiskered torus with silver ratio

  • Amadeu DelshamsEmail author
  • Marina Gonchenko
  • Pere Gutiérrez
Article

Abstract

We study the exponentially small splitting of invariant manifolds of whiskered (hyperbolic) tori with two fast frequencies in nearly integrable Hamiltonian systems whose hyperbolic part is given by a pendulum. We consider a torus whose frequency ratio is the silver number Ω = √2 − 1. We show that the Poincaré-Melnikov method can be applied to establish the existence of 4 transverse homoclinic orbits to the whiskered torus, and provide asymptotic estimates for the transversality of the splitting whose dependence on the perturbation parameter ɛ satisfies a periodicity property. We also prove the continuation of the transversality of the homoclinic orbits for all the sufficiently small values of ɛ, generalizing the results previously known for the golden number.

Keywords

transverse homoclinic orbits splitting of separatrices Melnikov integrals silver ratio 

MSC2010 numbers

37J40 70H08 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, V. I., On the Nonstability of Dynamical Systems with Many Degrees of Freedom, Soviet Math. Dokl., 1964, vol. 5, no. 3, pp. 581–585; see also: Dokl. Akad. Nauk SSSR, 1964, vol. 156, no. 1, pp. 9–12.Google Scholar
  2. 2.
    Baldomá, I., Fontich, E., Guardia, M., and Seara, T.M., Exponentially Small Splitting of Separatrices beyond Melnikov Analysis: Rigorous Results, J. Differential Equations, 2012, vol. 253, no. 12, pp. 3304–3439.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Delshams, A. and Gutiérrez, P., Splitting Potential and the Poincaré-Melnikov Method for Whiskered Tori in Hamiltonian Systems, J. Nonlinear Sci., 2000, vol. 10, no. 4, pp. 433–476.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Delshams, A. and Gutiérrez, P., Homoclinic Orbits to Invariant Tori in Hamiltonian Systems, in Multiple-Time-Scale Dynamical Systems (Minneapolis, Minn., 1997), C.K. R. T. Jones and A. I. Khibnik (Eds.), IMA Vol. Math. Appl., vol. 122, New York: Springer, 2001, pp. 1–27.CrossRefGoogle Scholar
  5. 5.
    Delshams, A. and Gutiérrez, P., Exponentially Small Splitting of Separatrices for Whiskered Tori in Hamiltonian Systems, J. Math. Sci. (N. Y.), 2005, vol. 128, no. 2, pp. 2726–2746; see also: Zap. Nauchn. Sem. S.–Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2003, vol. 300, pp. 87–121.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Delshams, A. and Gutiérrez, P., Exponentially Small Splitting for Whiskered Tori in Hamiltonian systems: Continuation of Transverse Homoclinic Orbits, Discrete Contin. Dyn. Syst., 2004, vol. 11, no. 4, pp. 757–783.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Delshams, A., Gonchenko, M., and Gutiérrez, P., Exponentially Small Asymptotic Estimates for the Splitting of Separatrices to Whiskered Tori with Quadratic and Cubic Frequencies, Electron. Res. Announc. Math. Sci., 2014, vol. 21, pp. 41–61.zbMATHMathSciNetGoogle Scholar
  8. 8.
    Delshams, A., Gonchenko, M., and Gutiérrez, P., Exponentially Small Lower Bounds for the Splitting of Separatrices to Whiskered Tori with Frequencies of Constant Type, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2014, vol. 24, no. 8, 1440011, 12 pp.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Delshams, A., Gonchenko, M., and Gutiérrez, P., A Methodology for Obtaining Asymptotic Estimates for the Exponentially Small Splitting of Separatrices to Whiskered Tori with Quadratic Frequencies, Preprint, http://arxiv.org/abs/1407.6524 (2014); to appear in Research Perspectives CRM Barcelona, 2014.Google Scholar
  10. 10.
    Delshams, A., Gelfreich, V. G., Jorba, À., and Seara, T. M., Exponentially Small Splitting of Separatrices under Fast Quasiperiodic Forcing, Comm. Math. Phys., 1997, vol. 189, no. 1, pp. 35–71.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Delshams, A., Gutiérrez, P., and Seara, T. M., Exponentially Small Splitting for Whiskered Tori in Hamiltonian Systems: Flow-Box Coordinates and Upper Bounds, Discrete Contin. Dyn. Syst., 2004, vol. 11, no. 4, pp. 785–826.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Delshams, A. and Ramírez-Ros, R., Exponentially Small Splitting of Separatrices for Perturbed Integrable Standard-Like Maps, J. Nonlinear Sci., 1998, vol. 8, no. 3, pp. 317–352.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Delshams, A. and Seara, T. M., An Asymptotic Expression for the Splitting of Separatrices of the Rapidly Forced Pendulum, Comm. Math. Phys., 1992, vol. 150, no. 3, pp. 433–463.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Delshams, A. and Seara, T. M., Splitting of Separatrices in Hamiltonian Systems with One and a Half Degrees of Freedom, Math. Phys. Electron. J., 1997, vol. 3,Paper 4, 40 pp.Google Scholar
  15. 15.
    Eliasson, L. H., Biasymptotic Solutions of Perturbed Integrable Hamiltonian Systems, Bol. Soc. Brasil. Mat. (N. S.), 1994, vol. 25, no. 1, pp. 57–76.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Falcón, S. and Plaza, Á., The k-Fibonacci Sequence and the Pascal 2-Triangle, Chaos Solitons Fractals, 2007, vol. 33, no. 1, pp. 38–49.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Gallavotti, G., Twistless KAM Tori, Quasi Flat Homoclinic Intersections, and Other Cancellations in the Perturbation Series of Certain Completely Integrable Hamiltonian Systems: A Review, Rev. Math. Phys., 1994, vol. 6, no. 3, pp. 343–411.CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Gelfreich, V. G., Melnikov Method and Exponentially Small Splitting of Separatrices, Phys. D, 1997, vol. 101, nos. 3–4, pp. 227–248.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Gallavotti, G., Gentile, G., and Mastropietro, V., Melnikov Approximation Dominance: Some examples, Rev. Math. Phys., 1999, vol. 11, no. 4, pp. 451–461.CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Gallavotti, G., Gentile, G., and Mastropietro, V., Separatrix Splitting for Systems with Three Time Scales, Comm. Math. Phys., 1999, vol. 202, no. 1, pp. 197–236.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Guardia, M. and Seara, T.M., Exponentially and Non-Exponentially Small Splitting of Separatrices for the Pendulum with a Fast Meromorphic Perturbation, Nonlinearity, 2012, vol. 25, no. 5, pp. 1367–1412.CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Kalman, D. and Mena, R., The Fibonacci Numbers -Exposed, Math. Mag., 2003, vol. 76, no. 3, pp. 167–181.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Koch, H., A Renormalization Group for Hamiltonians, with Applications to KAM Theory, Ergodic Theory Dynam. Systems, 1999, vol. 19, no. 2, pp. 475–521.CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Lazutkin, V. F., Splitting of Separatrices for the Chirikov Standard Map, J. Math. Sci. (N. Y.), 2005, vol. 128, no. 2, pp. 2687–2705; see also: Zap. Nauchn. Sem. S.–Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2003, vol. 300, no. 8, pp. 25–55, 285. (The original Russian preprint appeared in 1984.)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Lochak, P., Marco, J.-P., and Sauzin, D., On the Splitting of Invariant Manifolds in Multidimensional Near-Integrable Hamiltonian Systems, Mem. Amer. Math. Soc., 2003, vol. 163, no. 775, 145 pp.Google Scholar
  26. 26.
    Lochak, P., Effective Speed of Arnold’s Diffusion and Small Denominators, Phys. Lett. A, 1990, vol. 143, nos. 1–2, pp. 39–42.CrossRefMathSciNetGoogle Scholar
  27. 27.
    Melnikov, V.K., On the Stability of the Center for Time Periodic Perturbations, Trans. Moscow Math. Soc., 1963, vol. 12, pp. 1–57; see also: Tr. Mosk. Mat. Obs., 1963, vol. 12, pp. 3–52.Google Scholar
  28. 28.
    Niederman, L., Dynamics around Simple Resonant Tori in Nearly Integrable Hamiltonian Systems, J. Differential Equations, 2000, vol. 161, no. 1, pp. 1–41.CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Poincaré, H., Sur le problème des trois corps et les équations de la dynamique, Acta Math., 1890, vol. 13, pp. 1–270.CrossRefzbMATHGoogle Scholar
  30. 30.
    Pronin, A.V. and Treschev, D.V., Continuous Averaging in Multi-Frequency Slow-Fast Systems, Regul. Chaotic Dyn., 2000, vol. 5, no. 2, pp. 157–170.CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Rudnev, M. and Wiggins, S., Existence of Exponentially Small Separatrix Splittings and Homoclinic Connections between Whiskered Tori in Weakly Hyperbolic Near-Integrable Hamiltonian Systems, Phys. D, 1998, vol. 114, nos. 1–2, pp., 3–80.CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Rudnev, M. and Wiggins, S., On a Homoclinic Splitting Problem, Regul. Chaotic Dyn., 2000, vol. 5, no. 2, pp. 227–242.CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Sauzin, D., A New Method for Measuring the Splitting of Invariant Manifolds, Ann. Sci. École Norm. Sup. (4), 2001, vol. 34, no. 2, pp. 159–221.zbMATHMathSciNetGoogle Scholar
  34. 34.
    Simó, C., Averaging under Fast Quasiperiodic Forcing, in Hamiltonian Mechanics (Toruń, 1993), NATO Adv. Sci. Inst. Ser. B Phys., vol. 331, New York: Plenum, 1994, pp. 13–34.CrossRefGoogle Scholar
  35. 35.
    Simó, C. and Valls, C., A Formal Approximation of the Splitting of Separatrices in the Classical Arnold’s Example of Diffusion with Two Equal Parameters, Nonlinearity, 2001, vol. 14, no. 6, pp. 1707–1760.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Amadeu Delshams
    • 1
    Email author
  • Marina Gonchenko
    • 2
  • Pere Gutiérrez
    • 1
  1. 1.Dep. de Matemàtica Aplicada IUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations