Advertisement

Regular and Chaotic Dynamics

, Volume 19, Issue 6, pp 635–655 | Cite as

Separatrix splitting at a Hamiltonian 02 bifurcation

  • Vassili GelfreichEmail author
  • Lev Lerman
Article

Abstract

We study the splitting of a separatrix in a generic unfolding of a degenerate equilibrium in a Hamiltonian system with two degrees of freedom. We assume that the unperturbed fixed point has two purely imaginary eigenvalues and a non-semisimple double zero one. It is well known that a one-parameter unfolding of the corresponding Hamiltonian can be described by an integrable normal form. The normal form has a normally elliptic invariant manifold of dimension two. On this manifold, the truncated normal form has a separatrix loop. This loop shrinks to a point when the unfolding parameter vanishes. Unlike the normal form, in the original system the stable and unstable separatrices of the equilibrium do not coincide in general. The splitting of this loop is exponentially small compared to the small parameter. This phenomenon implies nonexistence of single-round homoclinic orbits and divergence of series in normal form theory. We derive an asymptotic expression for the separatrix splitting. We also discuss relations with the behavior of analytic continuation of the system in a complex neighborhood of the equilibrium.

Keywords

Hamiltonian bifurcation homoclinic orbit separatrix splitting asymptotics beyond all orders 

MSC2010 numbers

37J20 37J45 70K50 70K70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alfimov, G. L., Eleonsky, V.M., and Kulagin, N.E., Dynamical Systems in the Theory of Solitons in the Presence of Nonlocal Interactions, Chaos, 1992, vol. 2, no. 4, pp. 565–570.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Baldomá, I. and Seara, T.M., Breakdown of Heteroclinic Orbits for Some Analytic Unfoldings of the Hopf-Zero Singularity, J. Nonlinear Sci., 2006, vol. 16, no. 6, pp. 543–582.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Baldomá, I., Fontich, E., Guàrdia, M., and Seara, T. M., Exponentially Small Splitting of Separatrices beyond Melnikov Analysis: Rigorous Results, J. Differential Equations, 2012, vol. 253, no. 12, pp. 3304–3439.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Baldomá, I., Castejón, O., and Seara, T.M., Exponentially Small Heteroclinic Breakdown in the Generic Hopf-Zero Singularity, J. Dynam. Differential Equations, 2013, vol. 25, no. 2, pp. 335–392.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Broer, H. W., Chow, S.-N., Kim, Y., and Vegter, G., A Normally Elliptic Hamiltonian Bifurcation, Z. Angew. Math. Phys., 1993, vol. 44, no. 3, pp. 389–432.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Champneys, A.R., Homoclinic Orbits in Reversible Systems and Their Applications in Mechanics, Fluids and Optics, Phys. D, 1998, vol. 112, nos. 1–2, pp. 158–86CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Champneys, A.R., Codimension-One Persistence beyond All Orders of Homoclinic Orbits to Singular Saddle Centres in Reversible Systems, Nonlinearity, 2001, vol. 14, no. 1, pp. 87–112.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Gelfreich, V. G., Separatrix Splitting for a High-Frequency Perturbation of the Pendulum, Russ. J. Math. Phys., 2000, vol. 7, no. 1, pp. 48–71.zbMATHMathSciNetGoogle Scholar
  9. 9.
    Gelfreich, V. G., Splitting of a Small Separatrix Loop near the Saddle-Center Bifurcation in Area-Preserving Maps, Phys. D, 2000, vol. 136, nos. 3–4, pp. 266–279.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Gelfreich, V. and Lazutkin, V., Splitting of Separatrices: Perturbation Theory and Exponential Smallness, Russian Math. Surveys, 2001, vol. 56, no. 3, pp. 499–558; see also: Uspekhi Mat. Nauk, 2001, vol. 56, no. 3(339), pp. 79–142.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gelfreich, V., Near Strongly Resonant Periodic Orbits in a Hamiltonian System, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 22, pp. 13975–13979.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gelfreich, V. G. and Lerman, L. M., Almost Invariant Elliptic Manifold in a Singularly Perturbed Hamiltonian System, Nonlinearity, 2002, vol. 15, no. 2, pp. 447–457.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Gelfreich, V.G. and Lerman, L.M., Long-Periodic Orbits and Invariant Tori in a Singularly Perturbed Hamiltonian System, Phys. D, 2003, vol. 176, nos. 3–4, pp. 125–146.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gelfreich, V. and Simó, C., High-Precision Computations of Divergent Asymptotic Series and Homoclinic Phenomena, Discrete Contin. Dyn. Syst. Ser. B, 2008, vol. 10, nos. 2–3, pp. 511–536.zbMATHMathSciNetGoogle Scholar
  15. 15.
    Giorgilli, A., Unstable Equilibria of Hamiltonian Systems, Discrete Contin. Dynam. Systems, 2001, vol. 7, no. 4, pp. 855–871.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Grotta Ragazzo, C., Irregular Dynamics and Homoclinic Orbits to Hamiltonian Saddle Centers, Comm. Pure Appl. Math., 1997, vol. 50, no. 2, pp. 105–147.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Haragus, M. and Iooss, G., Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, London: Springer, 2011.CrossRefzbMATHGoogle Scholar
  18. 18.
    Iooss, G. and Adelmeyer, M., Topics in Bifurcation Theory and Applications, Adv. Ser. Nonlinear Dynam., vol. 3, River Edge, N.J.: World Sci., 1992.zbMATHGoogle Scholar
  19. 19.
    Iooss, G. and Lombardi, E., Polynomial Normal Forms with Exponentially Small Remainder for Analytic Vector Fields, J. Differential Equations, 2005, vol. 212, no. 1, pp. 1–61.CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Iooss, G. and Lombardi, E., Normal Forms with Exponentially Small Remainder: Application to Homoclinic Connections for the Reversible 02+ Resonance, C. R. Math. Acad. Sci. Paris, Ser. 1, 2004, vol. 339, no. 12, pp. 831–838.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Jézéquel, T., Bernard, P., and Lombardi, E., Homoclinic Connections with Many Loops near a 02 Resonant Fixed Point for Hamiltonian Systems, arXiv:1401.1509 (2014), 79 pp.Google Scholar
  22. 22.
    Koltsova, O., Families ofMulti-Round Homoclinic and Periodic Orbits near a Saddle-Center Equilibrium, Regul. Chaotic Dyn., 2003, vol. 8, no. 3, pp. 191–200.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Koltsova, O. and Lerman, L.M., Periodic and Homoclinic Orbits in a Two-Parameter Unfolding of a Hamiltonian System with a Homoclinic Orbit to a Saddle-Center, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1995, vol. 5, no. 2, pp. 397–408.CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Koltsova, O.Yu. and Lerman, L. M., Families of Transverse Poincaré Homoclinic Orbits in 2NDimensional Hamiltonian Systems Close to the System with a Loop to a Saddle-Center, Int. J. Bifurcation & Chaos, 1996, vol. 6, no. 6, pp. 991–1006.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Lerman, L.M. and Gelfreich, V.G., Fast-Slow Hamiltonian Dynamics near a Ghost Separatrix Loop, J. Math. Sci. (N. Y.), 2005, vol. 126, no. 5, pp. 1445–1466; see also: Sovrem. Mat. Prilozh., 2003, no. 8, pp. 85–107.CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Lerman, L.M., Hamiltonian Systems with a Separatrix Loop of a Saddle-Center, Selecta Math. (N. S.), 1991, vol. 10, pp. 297–306; see also: Methods of the Qualitative Theory of Differential Equations, E.A. Leontovich–Andronova (Ed.), Gorki: GGU, 1987, pp. 89–103.MathSciNetGoogle Scholar
  27. 27.
    Llibre, J., Martínez, R., and Simó, C., Transversality of the Invariant Manifolds Associated to the Lyapunov Family of Periodic Orbits near L2 in the Restricted Three-body Problem, J. Differential Equations, 1985, vol. 58, no. 1, pp. 104–156.CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Lombardi, E., Oscillatory Integrals and Phenomena beyond All Algebraic Orders: With Applications to Homoclinic Orbits in Reversible Systems, Lecture Notes in Math., vol. 1741, Berlin: Springer, 2000.CrossRefGoogle Scholar
  29. 29.
    Mielke, A., Holmes, P., and O’Reiley, O., Cascades of Homoclinic Orbits to, and Chaos near, a Hamiltonian Saddle-Center, J. Dynam. Differential Equations, 1992, vol. 4, no. 1, pp. 95–126.CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Moser, J., On the Generalization of a Theorem of A. Liapounoff, Comm. Pure Appl. Math., 1958, vol. 11, pp. 257–271.CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Treschev, D., Splitting of Separatrices for a Pendulum with Rapidly Oscillating Suspension Point, Russian J. Math. Phys., 1997, vol. 5, no. 1, pp. 63–98.zbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK
  2. 2.Lobachevsky State University of Nizhny Novgorod, RussiaNizhny NovgorodRussia

Personalised recommendations