Regular and Chaotic Dynamics

, Volume 19, Issue 6, pp 607–634 | Cite as

The dynamics of a body with an axisymmetric base sliding on a rough plane

  • Alexey V. Borisov
  • Nadezhda N. Erdakova
  • Tatiana B. Ivanova
  • Ivan S. Mamaev
Article

Abstract

In this paper we investigate the dynamics of a body with a flat base sliding on a horizontal and inclined rough plane under the assumption of linear pressure distribution of the body on the plane as the simplest dynamically consistent friction model. For analysis we use the descriptive function method similar to the methods used in the problems of Hamiltonian dynamics with one degree of freedom and allowing a qualitative analysis of the system to be made without explicit integration of equations of motion. In addition, we give a systematic review of the well-known experimental and theoretical results in this area.

Keywords

dry friction linear pressure distribution planar motion Coulomb law 

MSC2010 numbers

70F40 70F35 70E18 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bolotoff, E. A., Sur le mouvement d’une figure matérielle plane. Les effets du frottement de glissement, Mat. Sb., 1906, vol. 25, no. 4, pp. 562–708 (Russian).Google Scholar
  2. 2.
    Borisov, A. V. and Mamaev, I. S., The Rolling Motion of a Rigid Body on a Plane and a Sphere: Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 177–200.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 8, no. 3, pp. 277–328.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Borisov, A. V., Mamaev, I. S., and Kilin, A.A., The Rolling Motion of a Ball on a Surface: New Integrals and Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 201–219.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Boussinesq, J., Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques, Paris: Gauthier-Villars, 1885.MATHGoogle Scholar
  6. 6.
    Contensou, P., Couplage entre frottement de pivotement et frottement de pivotement dans la théorie de la toupie, in Kreiselprobleme Gyrodynamics: IUTAM Symp. Celerina, Berlin: Springer, 1963, p. 201–216.CrossRefGoogle Scholar
  7. 7.
    Erismann, Th., Theorie und Anwendungen des echten Kugelgetriebes, Z. Angew. Math. Phys., 1954, vol. 5, no. 5, pp. 355–388.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Farkas, Z., Bartels, G., Unger, T., and Wolf, D. E., Frictional Coupling between Sliding and Spinning Motion, Phys. Rev. Lett., 2003, vol. 90, no. 24, 248302, 4 pp.CrossRefGoogle Scholar
  9. 9.
    Fedichev, O.B. and Fedichev, P.O., Stopping Dynamics of Sliding and Spinning Bodies on a Rough Plane Surface, Rus. J. Nonlin. Dyn., 2011, vol. 7, no. 3, pp. 549–558 (Russian).Google Scholar
  10. 10.
    Field, P., On the Motion of a Disc with Three Supports on a Rough Plane, Phys. Rev. (Ser. 1), 1912, vol. 35, no. 3, pp. 177–184.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Fufaev, N.A., On the idealization of Surface of Contact in Form of Point Contact in the Problem of Rolling, J. Appl. Math. Mech., 1966, vol. 30, no. 1, pp. 78–84; see also: Prikl. Mat. Mekh., 1966, vol. 30, no. 1, pp. 67–72.CrossRefMATHGoogle Scholar
  12. 12.
    Goyal, S., Planar Sliding of a Rigid Body with Dry Friction: Limit Surfaces and Dynamics of Motion: PhD Thesis, Ithaca, N.Y., Cornell University, 1989.Google Scholar
  13. 13.
    Goyal, S., Ruina, A., and Papadopoulos, J., Planar Sliding with Dry Friction: Part 1: Limit Surface and Moment Function, Wear, 1991, vol. 143, pp. 307–330.CrossRefGoogle Scholar
  14. 14.
    Goyal, S., Ruina, A., and Papadopoulos, J., Planar Sliding with Dry Friction: Part 2: Dynamics of Motion, Wear, 1991, vol. 143, pp. 331–352.CrossRefGoogle Scholar
  15. 15.
    Gradshteyn, I. S. and Ryzhik, I.M., Table of Integrals, Series and Products, 4th ed., New York: Acad. Press, 1980, 1160 pp.MATHGoogle Scholar
  16. 16.
    Ivanov, A.P., A Dynamically Consistent Model of the Contact Stresses in the Plane Motion of a Rigid Body, J. Appl. Math. Mech., 2009, vol. 73, no. 2, pp. 134–144; see also: Prikl. Mat. Mekh., 2009, vol. 73, no. 2, pp. 189–203.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Ishlinsky, A.Yu., Sokolov, B. N., and Chernousko, F. L., On Motion of Flat Bodies with Friction, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1981, no. 4, pp. 17–28 (Russian).Google Scholar
  18. 18.
    Jellett, J.H., A Treatise on the Theory on Friction, London: MacMillan, 1872.Google Scholar
  19. 19.
    Jensen, M.T. and Shegelski, M.R.A., The Motion of Curling Rocks: Experimental Investigation and Semi-Phenomenological Description, Can. J. Phys., 2004, vol. 82, pp. 1–19.CrossRefGoogle Scholar
  20. 20.
    Johnson, K.L., Contact Mechanics, Cambridge: Cambridge Univ. Press, 1987.Google Scholar
  21. 21.
    Karapetyan, A.V. and Rusinova, A.M., A Qualitative Analysis of the Dynamics of a Disc on an Inclined Plane with Friction, J. Appl. Math. Mech., 2011, vol. 75, no. 5, pp. 511–516; see also: Prikl. Mat. Mekh., 2011, vol. 75, no. 5, pp. 731–737.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Kireenkov, A.A., On the Motion of a Homogeneous Rotating Disk along a Plane in the Case of Combined Friction, Mech. Solids, 2002, vol. 37, no. 1, pp. 47–53; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2002, no. 1, pp. 60–67.Google Scholar
  23. 23.
    Kireenkov, A. A., Semendyaev, S. V., and Filatov, V. F., Experimental Study of Coupled Two-Dimensional Models of Sliding and Spinning Friction, Mech. Solids, 2010, vol. 45, no. 6, pp. 921–930; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2010, no. 6, pp. 192–202.CrossRefGoogle Scholar
  24. 24.
    Kragelskii, I.V., Friction and Wear, London: Butterworths, 1965.Google Scholar
  25. 25.
    Kragelskii, I.V., Dobychin, M.N., and Kombalov, V. S., Friction and Wear Calculation Methods, Oxford: Pergamon Press, 1982.Google Scholar
  26. 26.
    Kragelskii, I.V. and Shchedrov, V. S., Development of Friction Science, Moscow: AN SSSR, 1956.Google Scholar
  27. 27.
    Kragelskii, I.V. and Vinogradova, I. E., Friction Factors, Moscow: Mashgiz, 1962.Google Scholar
  28. 28.
    Lurie, A. I., Analytical Mechanics, Berlin: Springer, 2002.CrossRefMATHGoogle Scholar
  29. 29.
    MacMillan, W. D., Dynamics of Rigid Bodies, New York: McGraw-Hill, 1936.MATHGoogle Scholar
  30. 30.
    Painlevé, P., Leçons sur le frottement, Paris: Hermann, 1895.MATHGoogle Scholar
  31. 31.
    Petrov, N.P., Reynolds, O., Sommerfeld, A., Mitchel, A., Zhukovsky, N.E., Chaplygin, S.A., Hydrodynamic Theory of Lubrication, Moscow: GTTI, 1934 (Russian).Google Scholar
  32. 32.
    Rosenblat, G.M., On the Integration of the Equation of Motion of the Body, Based on a Rough Plane by Three Points, Dokl. Akad. Nauk, 2010, vol. 435, no. 4, pp. 475–478 (Russian).MathSciNetGoogle Scholar
  33. 33.
    Rozenblat, G.M., Dynamical Systems with Dry Friction, Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2006 (Russian).Google Scholar
  34. 34.
    Rozenblat, G.M., On a Disk Sliding on a Rough Inclined Plane under an Arbitrary Law of Normal Stresses, Mech. Solids, 2013, vol. 48, no. 5, pp. 573–580; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2013, no. 5, pp. 109–117.CrossRefGoogle Scholar
  35. 35.
    Sal’nikova, T. V., Treshchev, D.V., and Gallyamov, S.R., Motion of a Free Hollow Disk on a Rough Horizontal Plane, Rus. J. Nonlin. Dyn., 2012, vol. 8, no. 1, pp. 83–101 (Russian).Google Scholar
  36. 36.
    Samsonov, V.A., Effect of Sliding and Pivoting on Friction, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1981, no. 2, pp. 76–78 (Russian).Google Scholar
  37. 37.
    Shegelski, M.R.A. and Holenstein, R., Rapidly Rotating Sliding Cylinders: Trajectories with Large Lateral Displacements, Can. J. Phys., 2002, vol. 80, pp. 141–147.CrossRefGoogle Scholar
  38. 38.
    Shegelski, M.R.A., Goodvin, G. L., Booth, R., Bagnall, P., and Reid, M., Exact Normal Forces and Trajectories for a Rotating Tripod Sliding on a Smooth Surface, Can. J. Phys., 2004, vol. 82, pp. 875–890.CrossRefGoogle Scholar
  39. 39.
    Shegelski, M.R.A., Niebergall, R., and Walton, M.A., The Motion of a Curling Rock, Can. J. Phys., 1996, vol. 74, pp. 663–670.CrossRefGoogle Scholar
  40. 40.
    Shegelski, M.R.A. and Reid, M., Comment on: “Curling Rock Dynamics-The Motion of a Curling Rock: Inertial vs. Noninertial Reference Frames”, Can. J. Phys., 1999, vol. 77, pp. 903–922.CrossRefGoogle Scholar
  41. 41.
    Shegelski, M.R.A., The Motion of a Curling Rock: Analytical Approach, Can. J. Phys., 2000, vol. 78, pp. 857–864.CrossRefGoogle Scholar
  42. 42.
    Shiller, N. N., Note on the Equilibrium of a Rigid Body under the Action of Friction on a Part of Its Surface, Tr. otd. fiz. nauk, 1892, vol. 5, no. 1, pp. 17–19 (Russian).Google Scholar
  43. 43.
    Treschev, D.V., Erdakova, N.N., and Ivanova, T.B., On the Final Motion of Cylindrical Solids on a Rough Plane, Rus. J. Nonlin. Dyn., 2012, vol. 8, no. 3, pp. 585–603 (Russian).Google Scholar
  44. 44.
    Voyenli, K. and Eriksen, E., On the Motion of an Ice Hockey Puck, Amer. J. Phys., 1985, vol. 53, pp. 1149–1153.CrossRefGoogle Scholar
  45. 45.
    Weidman, P. D. and Malhotra, Ch.P., Regimes of Terminal Motion of Sliding Spinning Disks, Phys. Rev. Lett., 2005, vol. 95, 264303, 4 pp.CrossRefGoogle Scholar
  46. 46.
    Weidman, P. D. and Malhotra, Ch.P., On the Terminal Motion of Sliding Spinning Disks with Uniform Coulomb Friction, Phys. D, 2007, vol. 233, no. 1, pp. 1–13.CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Wittenburg, J., Ebene Bewegungen bei flächenhaft verteilten Reibungskräften, Z. Angew. Math. Phys., 1970, vol. 5, pp. 637–640CrossRefGoogle Scholar
  48. 48.
    Zhukovskii, N. E., Equilibrium Conditions for a Rigid Body Based on a Fixed Plane with a Certain Area and Able to Move Along This Plane with Friction, in Collected Works: Vol. 1, Moscow: Gostekhteorizdat, 1949, pp. 339–354 (Russian).Google Scholar
  49. 49.
    Zhuravlev, V. F., On a Model of Dry Friction in the Problem of the Rolling of Rigid Bodies, J. Appl. Math. Mech., 1998, vol. 62, no. 5, pp. 705–710; see also: Prikl. Mat. Mekh., 1998, vol. 62, no. 5, pp. 762–767.CrossRefMathSciNetGoogle Scholar
  50. 50.
    Zhuravlev, V. Ph., Dynamics of a Heavy Homogeneous Ball on a Rough Plane, Mech. Solids, 2006, vol. 41, no. 6, pp. 1–5; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2006, no. 6, pp. 3–9.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Alexey V. Borisov
    • 1
    • 2
  • Nadezhda N. Erdakova
    • 1
  • Tatiana B. Ivanova
    • 1
    • 2
  • Ivan S. Mamaev
    • 3
  1. 1.Udmurt State UniversityIzhevskRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  3. 3.Kalashnikov Izhevsk State Technical UniversityIzhevskRussia

Personalised recommendations