Advertisement

Regular and Chaotic Dynamics

, Volume 19, Issue 4, pp 483–494 | Cite as

Attractor of Smale - Williams type in an autonomous distributed system

  • Vyacheslav P. Kruglov
  • Sergey P. Kuznetsov
  • Arkady Pikovsky
Article

Abstract

We consider an autonomous system of partial differential equations for a one-dimensional distributed medium with periodic boundary conditions. Dynamics in time consists of alternating birth and death of patterns with spatial phases transformed from one stage of activity to another by the doubly expanding circle map. So, the attractor in the Poincaré section is uniformly hyperbolic, a kind of Smale - Williams solenoid. Finite-dimensional models are derived as ordinary differential equations for amplitudes of spatial Fourier modes (the 5D and 7D models). Correspondence of the reduced models to the original system is demonstrated numerically. Computational verification of the hyperbolicity criterion is performed for the reduced models: the distribution of angles of intersection for stable and unstable manifolds on the attractor is separated from zero, i.e., the touches are excluded. The example considered gives a partial justification for the old hopes that the chaotic behavior of autonomous distributed systems may be associated with uniformly hyperbolic attractors.

Keywords

Smale -Williams solenoid hyperbolic attractor chaos Swift -Hohenberg equation Lyapunov exponent 

MSC2010 numbers

37D45 37D20 35B36 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc. (NS), 1967, vol. 73, pp. 747–817.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Williams, R. F., Expanding Attractors, Publ. Math. Inst. Hautes Études Sci., 1974, vol. 43, pp. 169–203.CrossRefGoogle Scholar
  3. 3.
    Shilnikov, L., Mathematical Problems of Nonlinear Dynamics: A Tutorial, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1997, vol. 7, no. 9, pp. 1953–2001.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Dynamical Systems 9: Dynamical Systems with Hyperbolic Behaviour, D.V. Anosov (Ed.), Encyclopaedia Math. Sci., vol. 9, Berlin: Springer, 1995.Google Scholar
  5. 5.
    Plykin, R.V. and Klinshpont, N. E., Strange Attractors: Topologic, Geometric and Algebraic Aspects, Regul. Chaotic Dyn., 2010, vol. 15, nos. 2–3, pp. 335–347.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Kuznetsov, S.P., Example of a Physical System with a Hyperbolic Attractor of the Smale — Williams Type, Phys. Rev. Lett., 2005, vol. 95, no. 14, 144101, 4 pp.Google Scholar
  7. 7.
    Kuznetsov, S.P. and Pikovsky, A., Autonomous Coupled Oscillators with Hyperbolic Strange Attractors, Phys. D, 2007, vol. 232, no. 2, pp. 87–102.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Kuznetsov, S.P., Example of Blue Sky Catastrophe Accompanied by a Birth of Smale -Williams Attractor, Regul. Chaotic Dyn., 2010, vol. 15, nos. 2–3, pp. 348–353.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Kuznetsov, S.P., Hyperbolic Chaos: A Physicist’s View, Berlin: Springer, 2012.CrossRefGoogle Scholar
  10. 10.
    Kuznetsov, S.P., Dynamical Chaos and Uniformly Hyperbolic Attractors: From Mathematics to Physics, Phys. Uspekhi, 2011, vol. 54, no. 2, pp. 119–144; see also: Uspekhi Fiz. Nauk, 2011, vol. 181, pp. 121–149.CrossRefGoogle Scholar
  11. 11.
    Kuptsov, P.V., Kuznetsov, S.P., and Pikovsky, A., Hyperbolic Chaos of Turing Patterns, Phys. Rev. Lett., 2012, vol. 108, no. 19, 194101, 4 pp.Google Scholar
  12. 12.
    Isaeva, O.B., Kuznetsov, A. S., and Kuznetsov, S.P., Hyperbolic Chaos of Standing Wave Patterns Generated Parametrically by a Modulated Pump Source, Phys. Rev. E, 2013, vol. 87, no. 4, 040901(R), 4 pp.Google Scholar
  13. 13.
    Isaeva, O.B., Kuznetsov, A. S., and Kuznetsov, S.P., Hyperbolic Chaos in Parametric Oscillations of a String, Nelin. Dinam., 2013, vol. 9, no. 1, pp. 3–10 (Russian).Google Scholar
  14. 14.
    Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory; P. 2: Numerical Application, Meccanica, 1980, vol. 15, pp. 9–30.CrossRefzbMATHGoogle Scholar
  15. 15.
    Politi, A., Lyapunov Exponent, Scholarpedia, 2013, vol. 8, no. 3, 2722.CrossRefGoogle Scholar
  16. 16.
    Ruffo, S., Lyapunov Spectra in Spatially Extended Systems, in Cellular Automata and Complex Systems (Santiago, 1996), Nonlinear Phenom. Complex Systems, vol. 3, Dordrecht: Kluwer, 1999, pp. 153–180.CrossRefGoogle Scholar
  17. 17.
    Lai, Y.-Ch., Grebogi, C., Yorke, J. A., and Kan, I., How Often Are Chaotic Saddles Nonhyperbolic?, Nonlinearity, 1993, vol. 6, no. 5, pp. 779–797.CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Anishchenko, V. S., Kopeikin, A. S., Kurths, J., Vadivasova, T.E., and Strelkova, G. I., Studying Hyperbolicity in Chaotic Systems, Phys. Lett. A, 2000, vol. 270, no. 6, pp. 301–307.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kuptsov, P.V., Fast Numerical Test of Hyperbolic Chaos, Phys. Rev. E, 2012, vol. 85, no. 1, 015203(R), 4 pp.CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Vyacheslav P. Kruglov
    • 1
    • 2
  • Sergey P. Kuznetsov
    • 1
    • 3
  • Arkady Pikovsky
    • 2
  1. 1.Saratov State UniversitySaratovRussia
  2. 2.Department of Physics and AstronomyUniversity of PotsdamPotsdam-GolmGermany
  3. 3.Saratov BranchKotel’nikov’s Institute of Radio-Engineering and Electronics of RASSaratovRussia

Personalised recommendations