Regular and Chaotic Dynamics

, Volume 19, Issue 3, pp 296–309 | Cite as

A rigid body on a surface with random roughness

  • Daniil Burlakov
  • Dmitry Treschev


Consider an interval on a horizontal line with random roughness. With probability one it is supported at two points: one on the left, and another on the right from its center. We compute the probability distribution of the support points provided the roughness is fine grained. We also solve an analogous problem where a circle or a disk lies on a rough plane. Some applications in static are given.


rigid body support with random roughness 

MSC2010 numbers

47N30 70C20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Salnikova, T. V., Treschev, D. V., and Gallyamov, S.R., On the Motion of Free Disc on the Rough Horizontal Plane, Rus. J. Nonlin. Dyn., 2012, vol. 8, no. 1, pp. 83–101 (Russian).Google Scholar
  2. 2.
    Burlakov, D. and Seslavina, A., On the Motion of a Cylindric Puck on the Horizontal Plane, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 4, pp. 125–139 (Russian).Google Scholar
  3. 3.
    Erdakova, N., Ivanova, T., and Treschev, D., On a Final Motion of Cylindric Bodies on a Rough Plane, Rus. J. Nonlin. Dyn., 2012, vol. 8, no. 3, pp. 585–603 (Russian).Google Scholar
  4. 4.
    Ivanov, A.P., A Dynamically Consistent Model of the Contact Stresses in the Plane Motion of a Rigid Body, J. Appl. Math. Mech., 2009, vol. 73, no. 2, pp. 134–144; see also: Prikl. Mat. Mekh., 2009, vol. 73, no. 2, pp. 189–203.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ishlinsky, A.Yu., Sokolov, B. N., and Chernousko, F. L., On Motion of Flat Bodies with Friction, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1981, no. 4, pp. 17–28 (Russian).Google Scholar
  6. 6.
    Kireenkov, A.A., On the Motion of a Homogeneous Rotating Disk along a Plane in the Case of Combined Friction, Mech. Solids, 2002, vol. 37, no. 1, pp. 47–53; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2002, no. 1, pp. 60–67.Google Scholar
  7. 7.
    Kireenkov, A. A., A Method for the Calculation of the Force and Torque of Friction in a Combined Model of Dry Friction for Circular Contact Areas, Mech. Solids, 2003, vol. 38, no. 3, pp. 39–43; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2003, no. 3, pp. 51–56.Google Scholar
  8. 8.
    Kireenkov, A. A., Semendyaev, S. V., and Filatov, V. F., Experimental Study of Coupled Two-Dimensional Models of Sliding and Spinning Friction, Mech. Solids, 2010, vol. 45, no. 6, pp. 921–930; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2010, no. 6, pp. 192–202.CrossRefGoogle Scholar
  9. 9.
    MacMillan, W. D., Dynamics of Rigid Bodies, New York: McGraw-Hill, 1936.zbMATHGoogle Scholar
  10. 10.
    Contensou, P., Couplage entre frottement de pivotement et frottement de pivotement dans la théorie de latoupie, in Kreiselprobleme Gyrodynamics: IUTAM Symp. Celerina, Berlin: Springer, 1963, pp. 201–216.CrossRefGoogle Scholar
  11. 11.
    Farkas, Z., Bartels, G., Unger, T., and Wolf, D. E., Frictional Coupling between Sliding and Spinning Motion, Phys. Rev. Lett., 2003, vol. 90, no. 24, 248302, 4 pp.CrossRefGoogle Scholar
  12. 12.
    Treschev, D., On the Support of a Body by a Surface with Random Roughness, arXiv:1305.4012 (2013).Google Scholar
  13. 13.
    Weidman, P. D. and Malhotra, Ch.P., On the Terminal Motion of Sliding Spinning Disks with Uniform Coulomb Friction, Phys. D, 2007, vol. 233, no. 1, pp. 1–13.zbMATHMathSciNetGoogle Scholar
  14. 14.
    Zhuravlev, V. F., On a Model of Dry Friction in the Problem of the Rolling of Rigid Bodies, J. Appl. Math. Mech., 1998, vol. 62, no. 5, pp. 705–710; see also: Prikl. Mat. Mekh., 1998, vol. 62, no. 5, pp. 762–767.CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityVorob’evy gory, MoscowRussia
  2. 2.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations