Advertisement

Regular and Chaotic Dynamics

, Volume 18, Issue 6, pp 686–696 | Cite as

Capture into resonance and escape from it in a forced nonlinear pendulum

  • Anatoly I. NeishtadtEmail author
  • Alexey A. Vasiliev
  • Anton V. Artemyev
Article

Abstract

We study the dynamics of a nonlinear pendulum under a periodic force with small amplitude and slowly decreasing frequency. It is well known that when the frequency of the external force passes through the value of the frequency of the unperturbed pendulum’s oscillations, the pendulum can be captured into resonance. The captured pendulum oscillates in such a way that the resonance is preserved, and the amplitude of the oscillations accordingly grows. We consider this problem in the frames of a standard Hamiltonian approach to resonant phenomena in slow-fast Hamiltonian systems developed earlier, and evaluate the probability of capture into resonance. If the system passes through resonance at small enough initial amplitudes of the pendulum, the capture occurs with necessity (so-called autoresonance). In general, the probability of capture varies between one and zero, depending on the initial amplitude. We demonstrate that a pendulum captured at small values of its amplitude escapes from resonance in the domain of oscillations close to the separatrix of the pendulum, and evaluate the amplitude of the oscillations at the escape.

Keywords

autoresonance capture into resonance adiabatic invariant pendulum 

MSC2010 numbers

34E13 70H11 70K30 70K65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friedland, L., Autoresonance in Nonlinear Systems, Scholarpedia, 2009, vol. 4, no. 1, p. 5473.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Veksler, V. I., A New Method of Acceleration of Relativistic Particles, Dokl. Akad. Nauk SSSR, 1944, vol. 43, no. 8, pp. 346–348 [J. Phys. USSR, 1945, vol. 9, no. 3, pp. 153–158].Google Scholar
  3. 3.
    McMillan, E. M., The Synchrotron: A Proposed High Energy Particle Accelerator, Phys. Rev., 1945, vol. 68, pp. 143–144.CrossRefGoogle Scholar
  4. 4.
    Arnol’d, V. I., Kozlov, V.V., and Neishtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed., Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 2006.Google Scholar
  5. 5.
    Sinclair, A.T., On the Origin of Commensurabilities amongst Satellites of Saturn, Monthly Not. Roy. Astron. Soc., 1972, vol. 160, no. 2, pp. 169–187.Google Scholar
  6. 6.
    Greenberg, R. J., Evolution of Satellite Resonances by Tidal Dissipation, Astron. J., 1973, vol. 78, no. 4, pp. 338–346.CrossRefGoogle Scholar
  7. 7.
    Henrard, J. and Lemaitre, A., A Second Fundamental Model for Resonance, Celestial Mech., 1983, vol. 30, pp. 197–218.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Neishtadt, A. I. and Timofeev, A.V., Autoresonance in Electron Cyclotron Heating of a Plasma, ZhETF, 1987, vol. 93, no. 5(11), pp. 1706–1713 [JETP, 1987, vol. 66, no. 5, pp. 973–977].Google Scholar
  9. 9.
    Kotel’nikov, I.A. and Stupakov, G.V., Adiabatic Theory of Nonlinear Electron-Cyclotron Resonance Heating, J. Plasma Phys., 1991, vol. 45, no. 1, pp. 19–27.CrossRefGoogle Scholar
  10. 10.
    Neishtadt, A. I. and Vasiliev, A. A., Capture into Resonance in Dynamics of a Classical Hydrogen Atom in an Oscillating Electric Field, Phys. Rev. E, 2005, vol. 71, no. 5, 056623, 6 pp.CrossRefGoogle Scholar
  11. 11.
    Neishtadt, A. I., Passage through a Separatrix in a Resonance Problem with a Slowly-Varying Parameter, Prikl. Mat. Mekh., 1975, vol. 39, no. 4, pp. 621–632 [J. Appl. Math. Mech., 1975, vol. 39, no. 4, pp. 594–605].MathSciNetGoogle Scholar
  12. 12.
    Fajans, J. and Friedland, L., Autoresonant (Nonstationary) Excitation of Pendulums, Plutinos, Plasmas, and Other Nonlinear Oscillators, Amer. J. Phys., 2001, vol. 69, pp. 1096–1102.CrossRefGoogle Scholar
  13. 13.
    Sagdeev, R. Z., Usikov, D.A., and Zaslavsky, G.M., Nonlinear Physics: From the Pendulum to Turbulence and Chaos, New York: Harwood Acad. Publ., 1988.zbMATHGoogle Scholar
  14. 14.
    Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, M. Abramowitz and I.A. Stegun (Eds.), Appl. Math. Ser., vol. 55, Washington, DC: National Bureau of Standards, U.S. Government Printing Office, 1964.zbMATHGoogle Scholar
  15. 15.
    Neishtadt, A. I., On Adiabatic Invariance in Two-Frequency Systems, in Hamiltonian Systems with Three or More Degrees of Freedom, NATO ASI Series, Series C, vol. 533, Dordrecht: Kluwer Acad. Publ., 1999.Google Scholar
  16. 16.
    Neishtadt, A. I. and Vasiliev, A. A., Destruction of Adiabatic Invariance at Resonances in Slow-Fast Hamiltonian Systems, Nuclear Instruments & Methods in Physics Research Section A, 2006, vol. 561, no. 2, pp. 158–165.CrossRefGoogle Scholar
  17. 17.
    Friedland, L., Migration Timescale Thresholds for Resonant Capture in the Plutino Problem, Astroph. J. Lett., 2001, vol. 547, L75–L79.CrossRefGoogle Scholar
  18. 18.
    Makarov, D.V., Uleysky, M.Yu., and Prants, S.V., Control of Atomic Transport Using Autoresonance, in Chaos, Complexity and Transport, X. Leoncini, M. Leonetti (Eds.), Singapore: World Sci., 2012, pp. 24–32.CrossRefGoogle Scholar
  19. 19.
    Itin, A.P., Neishtadt, A. I., and Vasiliev, A. A., Captures into resonance and scattering on resonance in dynamics of a charged relativistic particle in magnetic field and electrostatic wave, Physica D, 2000, vol. 141, pp. 281–296.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Anatoly I. Neishtadt
    • 1
    • 2
    Email author
  • Alexey A. Vasiliev
    • 1
  • Anton V. Artemyev
    • 1
  1. 1.Space Research InstituteMoscowRussia
  2. 2.Dept. of Math. SciencesLoughborough UniversityLoughborough, LeicestershireUK

Personalised recommendations