Advertisement

Regular and Chaotic Dynamics

, Volume 18, Issue 6, pp 600–607 | Cite as

MICZ-Kepler: Dynamics on the cone over SO(n)

  • Richard MontgomeryEmail author
Article
  • 64 Downloads

Abstract

We show that the n-dimensional MICZ-Kepler system arises from symplectic reduction of the “Kepler problem” on the cone over the rotation group SO(n). As a corollary we derive an elementary formula for the general solution of the MICZ-Kepler problem. The heart of the computation is the observation that the additional MICZ-Kepler potential, |ϕ|2/r 2, agrees with the rotational part of the cone’s kinetic energy.

Keywords

Kepler problem MICZ-K system co-adjoint orbit Sternberg phase space symplectic reduction superintegrable systems 

MSC2010 numbers

70Hxx 37J35 53D20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M., Complex Analytic Connections in Fibre Bundles, Trans. AMS, 1957, vol. 85, pp. 181–207; see also: Collected Works: Vol. 1, Oxford: Clarendon, 1987, pp. 97–102.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Borisov, A. V. and Mamaev, I. S., Superintegrable Systems on a Sphere, Regul. Chaotic Dyn., 2005, vol. 10, no. 3, pp. 257–266.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Meng, G., MICZ -Kepler Problem in All Dimensions, J. Math. Phys., 2007, vol. 48, no. 3, 032105, 14 pp.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Meng, G., The Poisson Realization of so(2, 2k + 2) on Magnetic Leaves, arXiv:1211.5992v5 [math-ph] (2012).Google Scholar
  5. 5.
    McIntosh, H. and Cisneros, A., Degeneracy in the Presence of a Magnetic Monopole, J. Math. Phys., 1970, vol. 11, pp. 896–916.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Montgomery, R., A Tour of Subriemannian Geometries, Their Geodesics, and Applications, Math. Surveys Monogr., vol. 91, Providence, RI: AMS, 2002.zbMATHGoogle Scholar
  7. 7.
    Montgomery, R., Canonical Formulations of a Particle in a Yang — Mills Field, Lett. Math. Phys., 1984, vol. 8, pp. 59–67.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Sternberg, S., On Minimal Coupling and the Symplectic Mechanics of a Classical Particle in the Presence of a Yang — Mills Field, Proc. Natl. Acad. Sci. USA, 1977, vol. 74, no. 12, pp. 5253–5254.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Weinstein, A., A Universal Phase Space for a Particle in a Yang — Mills Field, Lett. Math. Phys., 1978, vol. 2, pp. 417–420.CrossRefzbMATHGoogle Scholar
  10. 10.
    Zwanziger, D., Exactly Soluble Nonrelativistic Model of Particles with Both Electric and Magnetic Charges, Phys. Rev., 1968, vol. 176, no. 5, pp. 1480–1488.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Dept. of MathematicsUniversity of CaliforniaSanta CruzUSA

Personalised recommendations