Regular and Chaotic Dynamics

, Volume 18, Issue 5, pp 521–538 | Cite as

Richness of chaotic dynamics in nonholonomic models of a celtic stone

  • Alexander S. GonchenkoEmail author
  • Sergey V. Gonchenko
  • Alexey O. Kazakov


We study the regular and chaotic dynamics of two nonholonomic models of a Celtic stone. We show that in the first model (the so-called BM-model of a Celtic stone) the chaotic dynamics arises sharply, during a subcritical period doubling bifurcation of a stable limit cycle, and undergoes certain stages of development under the change of a parameter including the appearance of spiral (Shilnikov-like) strange attractors and mixed dynamics. For the second model, we prove (numerically) the existence of Lorenz-like attractors (we call them discrete Lorenz attractors) and trace both scenarios of development and break-down of these attractors.


celtic stone nonholonomic model strange attractor discrete Lorenz attractor Shilnikov-like spiral attractor mixed dynamics 

MSC2010 numbers

37J60 37N15 37G35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astapov, I. S., On Rotation Stability of Celtic Stone, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1980, no. 2, pp. 97–100 (Russian).Google Scholar
  2. 2.
    Karapetyan, A.V., On permanent rotations of heavy rigid body on the absolutely rough horizontal plane, Prikl. Mat. Mekh., 1981, vol. 45, no. 5, pp. 808–814 [J. Appl. Math. Mech., 1981, vol. 45, no. 5, pp. 808–814].MathSciNetGoogle Scholar
  3. 3.
    Markeev, A.P., The Dynamics of a Rigid Body on an Absolutely Rough Plane, Prikl. Mat. Mekh., 1983, vol. 47, no. 4, pp. 575–582 [J. Appl. Math. Mech., 1983, vol. 47, no. 4, pp. 473–478].MathSciNetGoogle Scholar
  4. 4.
    Markeev, A.P., Dynamics of a Body Touching a Rigid Surface, Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2011 (Russian).Google Scholar
  5. 5.
    Kazakov, A. O., Chaotic Dynamics Phenomena in the Rubber Rock-n-Roller on a Plane Problem, Rus. J. Nonlin. Dyn., 2013, vol. 9, no. 2, pp. 309–325 (Russian).MathSciNetGoogle Scholar
  6. 6.
    Kazakov, A. O., Strange Attractors and Mixed Dynamics in the Unbalanced Rubber Ball on a Plane Problem, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 508–520.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Borisov, A.V. and Mamaev, I. S., Strange Attractors in the Rattleback Dynamics, in Nonholonomic Dynamical Systems: Integrability, Chaos, Strange Attractors, A. V. Borisov, I. S. Mamaev (Eds.), Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2002, pp. 296–326 (Russian).Google Scholar
  8. 8.
    Borisov, A.V. and Mamaev, I. S., Strange Attractors in Rattleback Dynamics, Uspekhi Fiz. Nauk, 2003, vol. 173, no. 4, pp. 408–418 [Physics-Uspekhi, 2003, vol. 46, no. 4, pp. 393–403].MathSciNetGoogle Scholar
  9. 9.
    Shilnikov, L.P., Bifurcation Theory and Turbulence, in Methods of Qualitative Theory of Differential Equations, E.A. Leontovich (Ed.), Gorky: Gorky Gos. Univ., 1986, pp. 150–165, 215 (Russian).Google Scholar
  10. 10.
    Gonchenko, S. V., Turaev, D. V., and Shilnikov, L.P., On Newhouse Domains of Two-Dimensional Diffeomorphisms That Are Close To a Diffeomorphism with a Structurally Unstable Heteroclinic Contour, in Dynamical Systems and Related Topics: Collection of Articles to the 60th Anniversary of Academician D.V.Anosov, Tr. Mat. Inst. Steklova, vol. 216, Moscow: Nauka, 1997, pp. 76–125 [Proc. Steklov Inst. Math., 1997, vol. 216, pp. 70–118].Google Scholar
  11. 11.
    Gonchenko, S. V., Shilnikov, L.P., and Stenkin, O.V., On Newhouse Regions with Infinitely Many Stable and Unstable Invariant Tori, in Proc. of Intern. Conf. “Progress in Nonlinear Science”: Dedicated to 100th Anniversary of A.A.Andronov, N.Novgorod, 2002, pp. 80–102.Google Scholar
  12. 12.
    Lamb, J. S.W. and Stenkin, O. V., Newhouse Regions for Reversible Systems with Infinitely Many Stable, Unstable and Elliptic Periodic Orbits, Nonlinearity, 2004, vol. 17, no. 4, pp. 1217–1244.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Delshams, A., Gonchenko, S. V., Gonchenko, A. S., Lázaro, J. T., and Sten’kin, O., Abundance of Attracting, Repelling and Elliptic Periodic Orbits in Two-Dimensional Reversible Maps, Nonlinearity, 2013, vol. 26, no. 1, pp. 1–33.CrossRefzbMATHGoogle Scholar
  14. 14.
    Newhouse, S.E., The Abundance of Wild Hyperbolic Sets and Non-Smooth Stable Sets for Diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., 1979, vol. 50, no. 1, pp. 101–151.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gonchenko, S.V., Turaev, D.V., and Shilnikov, L.P., On the Existence of Newhouse Regions Near Systems with Non-Rough Poincaré Homoclinic Curve (Multidimensional Case), Dokl. Ross. Akad. Nauk, 1993, vol. 329, no. 4, pp. 404–407 [Russian Acad. Sci. Dokl. Math., 1993, vol. 47, no. 2, pp. 268–283].MathSciNetGoogle Scholar
  16. 16.
    Palis, J. and Viana, M., High Dimension Diffeomorphisms Displaying Infinitely Many Sinks, Ann. of Math. (2), 1994, vol. 140, no. 1, pp. 91–136.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Romero, N., Persistence of Homoclinic Tangencies in Higher Dimensions, Ergodic Theory Dynam. Systems, 1995, vol. 15, no. 4, pp. 735–757.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gonchenko, S., Shilnikov, L., and Turaev, D., Homoclinic Tangencies of Arbitrarily High Orders in Conservative and Dissipative Two-Dimensional Maps, Nonlinearity, 2007, vol. 20, no. 2, pp. 241–275.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Newhouse, S.E., Diffeomorphisms with Infinitely Many Sinks, Topology, 1974, vol. 13, pp. 9–18.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Turaev, D.V. and Shil’nikov, L.P., An Example of a Wild Strange Attractor, Mat. Sb., 1998, vol. 189, no. 2, pp. 137–160 [Sb. Math., 1998, vol. 189, nos. 1–2, pp. 291–314].MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Turaev, D.V. and Shil’nikov, L.P., Pseudohyperbolicity and the Problem on Periodic Perturbations of Lorenz-Type Attractors, Dokl. Akad. Nauk, 2008, vol. 418, no. 1, pp. 23–27 [Russian Dokl. Math., 2008, vol. 77, no. 1, pp. 17–21].MathSciNetGoogle Scholar
  22. 22.
    Gonchenko, S. V., Ovsyannikov, I. I., Simó, C., and Turaev, D., Three-Dimensional Hénon-Like Maps and Wild Lorenz-Like Attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2005, vol. 15, no. 11, pp. 3493–3508.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gonchenko, A. S. and Gonchenko, S.V., On Existence of Lorenz-Like Attractors in a Nonholonomic Model of Celtic Stones, Rus. J. Nonlin. Dyn., 2012, vol. 9, no. 1, pp. 77–89 (Russian).Google Scholar
  24. 24.
    Gonchenko, A. S., On Lorenz-Like Attractors in Model of Celtic Stone, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 2, pp. 3–11 (Russian).Google Scholar
  25. 25.
    Borisov, A.V. and Mamaev, I. S., Dynamics of a Rigid Body, Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2001 (Russian).Google Scholar
  26. 26.
    Borisov, A.V., Jalnine, A.Yu., Kuznetsov, S.P., Sataev, I.R., and Sedova, J.V., Dynamical Phenomena Occurring Due To Phase Volume Compression in Nonholonomic Model of the Rattleback, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 512–532.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Karapetyan, A.V., Hopf Bifurcation in a Problem of Rigid Body Moving on a Rough Plane, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1985, no. 2, pp. 19–24 (Russian).Google Scholar
  28. 28.
    Shilnikov, L.P., Existence of a Countable Set of Periodic Motions in a Neighborhood of a Homoclinic Curve, Dokl. Akad. Nauk SSSR, 1967, vol. 172, no. 2, pp. 298–301 (Russian).MathSciNetGoogle Scholar
  29. 29.
    Anishchenko, V. S., Complicated Oscillations in Simple Systems, Moscow: Nauka, 1990 (Russian).Google Scholar
  30. 30.
    Vitolo, R., Bifurcations of Attractors in 3D Diffeomorphisms, PhD Thesis, Groningen Univ. Press, 2003.Google Scholar
  31. 31.
    Shilnikov, L.P., The Bifurcation Theory and the Lorenz Model, in Bifurcation of the Cycle and Its Applications, Moscow: Mir, 1980, pp. 317–335 (Russian).Google Scholar
  32. 32.
    Gonchenko, A. S., Gonchenko, S.V., and Kazakov, A.O., On Some New Aspects of Celtic Stone Chaotic Dynamics, Rus. J. Nonlin. Dyn., 2012, vol. 8, no. 3, pp. 507–518 (Russian).Google Scholar
  33. 33.
    Kuznetsov, S.P., Jalnine, A.Y., Sataev, I.R., and Sedova, J. V., Phenomena of Nonlinear Dynamics of Dissipative Systems in Nonholonomic Mechanics of the Rattleback, Rus. J. Nonlin. Dyn., 2012, vol. 8, no. 4, pp. 735–762 (Russian).Google Scholar
  34. 34.
    Gonchenko, A. S., Gonchenko, S.V., and Shilnikov, L.P., Towards Scenarios of Chaos Appearance in Three-Dimensional Maps, Rus. J. Nonlin. Dyn., 2012, vol. 8, no. 1, pp. 3–28 (Russian).Google Scholar
  35. 35.
    Anosov, D.V., Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Trudy Mat. Inst. Steklov, 1967, vol. 90, pp. 3–209 [Proc. Steklov. Inst. Math., Providence, R. I.: AMS, 1969].MathSciNetGoogle Scholar
  36. 36.
    Afraimovich, V. S. and Shil’nikov, L.P., Strange Attractors and Quasiattractors, in Nonlinear Dynamics and Turbulence, G. I. Barenblatt, G. Iooss, D. D. Joseph (Eds.), Interaction Mech. Math. Ser., Boston, MA: Pitman, 1983, pp. 1–34.Google Scholar
  37. 37.
    Anosov, D.V. and Solodov, V. V., Hyperbolic Sets, in Dynamical Systems — 9, Encyclopaedia Math. Sci., vol. 66, Berlin: Springer, 1995, pp 10–92.Google Scholar
  38. 38.
    Afraimovich, V. S., Bykov, V.V., and Shil’nikov, L.P., On Attracting Structurally Unstable Limit Sets of Lorenz Attractor Type, Trudy Moskov. Mat. Obshch., 1982, vol. 44, pp. 150–212 [Trans. Mosc. Math. Soc., 1982, vol. 44, pp. 153–216].MathSciNetGoogle Scholar
  39. 39.
    Ruelle, D., Small Random Perturbations of Dynamical Systems and the Definition of Attractors, Comm. Math. Phys., 1981, vol. 82, pp. 137–151.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Auslander, J. and Seibert, P., Prolongations and Stability in Dynamical Systems, Ann. Inst. Fourier (Grenoble), 1964, vol. 14, fasc. 2, pp. 237–267.MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Gonchenko, A. S., Gonchenko, S.V., Ovsyannikov, I. I., and Turaev, D., Lorenz-Like Attractors in Three-Dimensional Hénon Maps, Math. Model. Nat. Phenom., 2013, vol. 8, no. 5, pp. 80–92.MathSciNetGoogle Scholar
  42. 42.
    Afraimovich, V. S. and Shil’nikov, L.P., On invariant two-dimensional tori, their breakdown and stochasticity,Methods of the Qualitative Theory of Differential Equations (Gorky), 1983, pp. 2–26. [English translation in: Amer. Math. Soc. Transl., 149 (1991), pp. 201–212].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Alexander S. Gonchenko
    • 1
    Email author
  • Sergey V. Gonchenko
    • 1
  • Alexey O. Kazakov
    • 1
    • 2
  1. 1.Research Institute of Applied Mathematics and CyberneticsNizhny Novgorod State UniversityNizhny NovgorodRussia
  2. 2.Institute of Computer ScienceIzhevskRussia

Personalised recommendations