Regular and Chaotic Dynamics

, Volume 18, Issue 1–2, pp 100–117 | Cite as

The self-propulsion of a body with moving internal masses in a viscous fluid

  • Evgeny V. Vetchanin
  • Ivan S. Mamaev
  • Valentin A. Tenenev
Article

Abstract

An investigation of the characteristics of motion of a rigid body with variable internal mass distribution in a viscous fluid is carried out on the basis of a joint numerical solution of the Navier — Stokes equations and equations of motion for a rigid body. A nonstationary three-dimensional solution to the problem is found. The motion of a sphere and a drop-shaped body in a viscous fluid in a gravitational field, which is caused by the motion of internal material points, is explored. The possibility of self-propulsion of a body in an arbitrary given direction is shown.

Keywords

finite-volume numerical method Navier-Stokes equations variable internal mass distribution motion control 

MSC2010 numbers

70Hxx 70G65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borisov, A.V. and Mamaev, I. S., Dynamics of a Rigid Body: Hamiltonian Methods, Integrability, Chaos, Moscow-Izhevsk: R&C Dynamics, Institute of Computer Science, 2001 (Russian).Google Scholar
  2. 2.
    Borisov, A. V., Kozlov, V. V., and Mamaev, I. S., Asymptotic Stability and Associated Problems of a Falling Rigid Body, Regul. Chaotic Dyn., 2007, vol. 12, no. 5, pp. 531–565.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Borisov, A.V. and Mamaev, I. S., On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation, Chaos, 2006, vol. 16, no. 1, 013118, 7 pp.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lamb, H., Hydrodynamics, 6th ed., New York: Dover, 1945.Google Scholar
  5. 5.
    Schlichting, H., Grenzschichttheorie, Karlsruhe: G.Braun, 1982.Google Scholar
  6. 6.
    Lindgren, E. R., The Motion of a Sphere in an Incompressible Viscous Fluid at Reynolds Number Considerably Less Than One, Phys. Scripta, 1999, vol. 60, pp. 97–110.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Gushchin, V.A. and Matyushin, P. V., Mathematical Modelling of the 3D Incompressible Fluid Flows, Matem. Mod., 2006, vol. 18, no. 5, pp. 5–20 (Russian).MATHGoogle Scholar
  8. 8.
    Allen, J. J., Jouanne, Y., and Shashikanth, B.N., Vortex with a Moving Sphere, J. Fluid Mech., 2007, vol. 587, pp. 337–346.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Tallapragada, Ph. and Kelly, S., Dynamics and Self-Propulsion of a Spherical Body Shedding Coaxial Vortex Ring in an Ideal Fluid, Regul. Chaotic Dyn., 2012, vol. 18, nos. 1–2, pp. 21–32.Google Scholar
  10. 10.
    Saffman, P.G., The Self-Propulsion of a Deformable Body in a Perfect Fluid, J. Fluid Mech., 1967, vol. 28, no. 2. pp. 385–389.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Galper, A.R. and Miloh, T., Motion Stability of a Deformable Body in an Ideal Fluid with Applications to the N Spheres Problem, Phys. Fluids, 1998, vol. 10, no. 1, pp. 119–130.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Galper, A.R. and Miloh, T., Hydrodynamics and Stability of a Deformable Body Moving in the Proximity of Interfaces, Phys. Fluids, 1999, vol. 11, no. 4, pp. 795–806.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Lighthill, M. J., On the Squirming Motion of Nearly Spherical Deformable Bodies through Liquids at Very Small Reynolds Numbers, Comm. Pure Appl. Math., 1952, vol. 5, no. 2, pp. 109–118.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Koiller, J., Ehlers, K., and Montgomery, R., Problems and Progress in Microswimming, J. Nonlinear Sci., 1996, vol. 6, pp. 507–541.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Ehlers, K.M., Koiller, J., Micro-swimming Without Flagella: Propulsion by Internal Structures, Regul. Chaotic Dyn., 2011, vol. 16, no. 6, pp. 623–652.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Chernous’ko, F. L., Motion of a Body in a Fluid Due to Attached-Link Oscillations, Dokl. Akad. Nauk, vol. 431, no. 1, pp. 46–49 [Dokl. Phys., 2010, vol. 55, no. 3, pp. 138–141].Google Scholar
  17. 17.
    Optimal Motion of a Multilink System in a Resistive Medium, Tr. Inst. Mat. i Mekh. UrO RAN, 2011, vol. 17,no. 2, pp. 240–255 [Proc. Steklov Inst. Math., 2012, vol. 276, no. 1 Suppl., pp. 63–79].Google Scholar
  18. 18.
    Chernous’ko, F. L., Bolotnik, N.N, and Figurina, T.Yu., Optimal Control of Vibrationally Excited Locomotion Systems, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 85–99.Google Scholar
  19. 19.
    Guasto, J. S., Johnson, K.A., and Gollub, J.P., Oscillatory Flows Induced by Microorganisms Swimming in Two Dimensions, Phys. Rev. Lett., 2010, vol. 105, 168102, 4 pp.CrossRefGoogle Scholar
  20. 20.
    Hieber, S.E. and Koumoutsakos, P., An Immersed Boundary Method for Smoothed Particle Hydrodynamics of Self-Propelled Swimmers, J. Comput. Phys., 2008, vol. 227, no. 19, pp. 8636–8654.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Sahin, M., Mohseni, K., and Colin, S.P., The Numerical Comparison of Flow Patterns and Propulsive Performances for the Hydromedusae Sarsia Sp. and Aequorea Victoria, J. Exp. Biol., 2009, vol. 212, pp. 2656–2667.CrossRefGoogle Scholar
  22. 22.
    Eldredge, J.D., Numerical Simulations of Undulatory Swimming at Moderate Reynolds Number, Bioinspir. Biomim., 2006, vol. 1, no. 4, S19–S24.CrossRefGoogle Scholar
  23. 23.
    Eldredge, J.D., Colonius, T., and Leonard, A., A Vortex Particle Method for Two-Dimensional Compressible Flow, J. Comput. Phys., 2002, vol. 179, no. 2, pp. 371–399.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Yatsun, S. F., Bezmen, P.A., Sapronov, K.A., and Rublev, S.B., Dynamics of the Vibration Mobile Robot with Internal Movable Mass, Izv. Kursk. Gos. Tekhn. Univ., 2010, vol. 31, no. 2, pp. 21–31 (Russian).Google Scholar
  25. 25.
    Chernous’ko, F. L. and Bolotnik, N.N., Mobile Robots Controlled by the Motion of Internal Bodies, Tr. Inst. Mat. i Mekh. UrO RAN, 2010, vol. 16, no. 5, pp. 213–222 (Russian).Google Scholar
  26. 26.
    Volkova, L.Yu. and Jatsun, S. F., Control of the Three-Mass Robot Moving in the Liquid Environment, Rus. J. Nonlin. Dyn., 2011, vol. 7, no. 4, pp. 845–857 (Russian).Google Scholar
  27. 27.
    Childress, S., Spagnolie, S.E., and Tokieda, T., A Bug on a Raft: Recoil Locomotion in a Viscous Fluid, J. Fluid Mech., 2011, vol. 669, pp. 527–556.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Ramodanov, S.M. and Tenenev, V.A., Motion of a Body with Variable Distribution of Mass in a Boundless Viscous Liquid, Rus. J. Nonlin. Dyn., 2011, vol. 7, no. 3, pp. 635–647 (Russian).Google Scholar
  29. 29.
    Ramodanov, S. M., Tenenev, V.A., and Treschev, D. V., Self-propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 547–558.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Vetchanin, E. V. and Tenenev, V.A., Motion Control Simulating in a Viscous Liquid of a Body with Variable Geometry of Weights, Computer Research and Modeling, 2011, vol. 3, no. 4, pp. 371–381 (Russian).Google Scholar
  31. 31.
    Kozlov, V.V. and Ramodanov, S. M., The Motion of a Variable Body in an Ideal Fluid, Prikl. Mat. Mekh., 2001, vol. 65, no. 4, pp. 592–601 [J. Appl. Math. Mech., 2001, vol. 65, no. 4, pp. 579–587].MathSciNetMATHGoogle Scholar
  32. 32.
    Mougin, G. and Magnaudet, J., The Generalized Kirchhoff Equations and Their Application to the Interaction between a Rigid Body and an Arbitrary Time-Dependent Viscous Flow, Internat. J. Multiphase Flow, 2002, vol. 28, pp. 1837–1851.MATHCrossRefGoogle Scholar
  33. 33.
    Calmet, I. and Magnaudet, J., Large-Eddy Simulation of High-Schmidt Number Mass Transfer in a Turbulent Channel Flow, Phys. Fluids, 1997, vol. 9, no. 2, pp. 438–455.CrossRefGoogle Scholar
  34. 34.
    Rai, M. M. and Moin, P., Direct Simulations of Turbulent Flow Using Finite-Difference Schemes, J. Comput. Phys., 1991, vol. 96, pp. 15–53.MATHCrossRefGoogle Scholar
  35. 35.
    Mittal, R., Dong, H., Bozkurttas, M., Najjar, F.M., Vargas, A., and von Loebbecke, A., A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows with Complex Boundaries, J. Comp. Phys., 2008, vol. 227, pp. 4825–4852.MATHCrossRefGoogle Scholar
  36. 36.
    Loitsansky, L.G., Fluid and Gas Mechanics, Moscow: Nauka, 1973 (Russian).Google Scholar
  37. 37.
    OpenFOAM: The Open Source CFD Toolbox: Programmer’s Guide: v. 2.1.0, 15th Dec 2011.Google Scholar
  38. 38.
    Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York: Taylor & Francis Group, 1980.MATHGoogle Scholar
  39. 39.
    Dupeux, G., Goff, A. L., Quéré, D., and Clanet, C., The Spinning Ball Spiral, New J. Phys., 2010, vol. 12, 093004, 12ppCrossRefGoogle Scholar
  40. 40.
    Kozlov, V.V. and Ramodanov, S. M., On the Motion of a Body with a Rigid Hull and Changing Geometry of Masses in an Ideal Fluid, Dokl. Akad. Nauk, 2002, vol. 382, no. 4, pp. 478–481 [Dokl. Phys., 2002, vol. 47, no. 2, pp. 132–135].MathSciNetGoogle Scholar
  41. 41.
    Kozlov, V.V. and Onishchenko, D. A., On the Motion of a Body with a Rigid Hull and Changing Geometry of Masses in an Ideal Unlimited Fluid, in Problems of Mechanics: To the 90th Birthday of A.Yu. Ishlinskii, D.M. Klimov (Ed.), Moscow: Fizmatlit, 2003, pp. 465–476 (Russian).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Evgeny V. Vetchanin
    • 1
  • Ivan S. Mamaev
    • 2
    • 3
    • 4
  • Valentin A. Tenenev
    • 1
  1. 1.Izhevsk State Technical UniversityIzhevskRussia
  2. 2.Institute of Computer ScienceUdmurt State UniversityIzhevskRussia
  3. 3.A.A. Blagonravov Mechanical Engineering Research Institute of RASMoscowRussia
  4. 4.Institute of Mathematics and Mechanics of the Ural Branch of RASEkaterinburgRussia

Personalised recommendations